Skip to main content
Log in

On phase transformations in shape memory alloy materials and large deformation generalized plasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A new version of rate-independent generalized plasticity, suitable for the derivation of general thermomechanical constitutive laws for materials undergoing phase transformations, is proposed within a finite deformation framework. More specifically, by assuming an additive decomposition of the finite strain tensor into elastic and inelastic (transformation induced) parts and by considering the fractions of the various material phases as internal variables, a multi-phase formulation of the theory is developed. The concepts presented are applied for the derivation of a three-dimensional thermomechanical model for shape memory alloy materials. The ability of the model in simulating several patterns of the extremely complex behavior of these materials, under both monotonic and cyclic loadings, is assessed by representative numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Bhattacharya K., Knowles J.K.: Strain-energy functions with multiple local minima: modeling phase transformations using finite thermoelasticity. In: Fu, Y., Ogden, R.W. (eds) Nonlinear Elasticity: Theory and Applications, pp. 433–490. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  2. Anand L., Gurtin M.E.: Thermal effects in the superelasticity of crystalline shape-memory materials. J. Mech. Phys. Solids 51, 1015–1058 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Arndt M., Griebel M., Novác V., Rubíc̆ek T., S̆ittner P.: Martensitic transformation in NiMnGa single crystals: Numerical simulation and experiments. Int. J. Plast. 22, 1943–1961 (2006)

    Article  MATH  Google Scholar 

  4. Auricchio F., Taylor R.L., Lubliner J.: Shape-memory alloys: modeling and numerical simulations of the finite strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 171, 387–418 (1997)

    Google Scholar 

  5. Ball J.M., James R.D.: Fine phase mixtures and minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertram A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 15, 353–374 (1998)

    Article  Google Scholar 

  7. Bhattacharya, K.: Microstructure of Martensite. Why it Forms and How it Gives Rise to the Shape-Memory Effect? Oxford University Press, Oxford (2003)

  8. Boyd J.G., Lagoudas D.C.: Thermomechanical response of shape memory alloy composites. J. Intell. Mater. Syst. Struct. 5, 333–346 (1994)

    Article  Google Scholar 

  9. Brezis H.: On characterization of flow invariant sets. Commun. Pure Appl. Math. 23, 261–263 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brinson L.C.: One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4, 229–242 (1993)

    Article  Google Scholar 

  11. Casey J.: Approximate kinematical relations in finite plasticity. Int. J. Solids Struct. 21, 671–682 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan C.W., Chan S.H.J., Man H.C.: 1-D constitutive model for evolution of stress induced R-phase and localized Lüders-like stress-induced martensitic transformation of super-elastic NiTi wires. Int. J. Plast. 32(33), 85–105 (2012)

    Article  Google Scholar 

  13. Ciarlet P.G.: Mathematical Elasticity, Volume 1: Three Dimensional Elasticity, Studies in Mathematics and Its Applications. North–Holland, Amsterdam (1985)

    Google Scholar 

  14. Coleman B.D., Gurtin M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  ADS  Google Scholar 

  15. Fosdick R.L., Serrin J.: Global properties of continuum thermodynamic processes. Arch. Rat. Mech. Anal. 59, 97–109 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freed Y., Banks–Sills L.: Crack growth resistance of shape memory alloys by means of a cohesive zone model. J. Mech. Phys. Solids 55, 2157–2180 (2007)

    Article  MATH  ADS  Google Scholar 

  17. Freed, Y., Aboudi, J.: Micromechanical investigation of plasticity—damage coupling of concrete reinforced by shape memory alloy fibers. Smart Mater Struct. 17 art. no. 015046 (2008)

  18. Freed Y., Banks–Sills L., Aboudi J.: On the transformation toughening of a crack along an interface between a shape memory alloy and an isotropic medium. J. Mech. Phys. Solids 56, 3003–3020 (2008)

    Article  MATH  ADS  Google Scholar 

  19. Fried E., Gurtin M.E.: Dynamic solid–solid transitions with phase characterized by an order parameter. Phys. D. 72, 287–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Green A.E., Naghdi P.M.: A general theory of an elastic–plastic continuum. Arch. Rat. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ivshin Y., Pence T.: A thermodynamical model for a one variant shape memory material. J. Intell. Mater. Syst. Struct. 5, 455–473 (1994)

    Article  Google Scholar 

  22. James R.D., Hane K.F.: Martensitic transformations and shape-memory materials. Acta. Mater. 48, 197–222 (2000)

    Article  Google Scholar 

  23. Jannetti, C., Bassani, J.L., Turteltaub, S.: Three-dimensional finite-element simulation of shape-memory alloys using a thermodynamically—based theory of martensite phase transformations. Seventh United States National Congress on Computational Mechanics (2003)

  24. Kan Q., Kang G.: Constitutive model for triaxial transformation ratcheting Of super-elastic NiTi shape memory alloy at room temperature. Int. J. Plast. 26, 441–465 (2010)

    Article  MATH  Google Scholar 

  25. Leclercq S., Lexcellent C.: A general macroscopic description of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 44, 953–980 (1996)

    Article  ADS  Google Scholar 

  26. Levitas V.I., Preston D.L.: Thermomechanical lattice instability and phase field theory of martensitic phase transformations, twinning and dislocations at large strains. Phys. Lett. A. 343, 32–39 (2005)

    Article  MATH  ADS  Google Scholar 

  27. Levitas V.I., Ozsoy I.B.: Micromechanical modeling of stress–induced phase transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation. Int. J. Plast. 25, 239–280 (2009)

    Article  MATH  Google Scholar 

  28. Lexcellent C., Laydi R.M.: About the choice of a plastic-like model for shape memory alloys. Vietnam J. Mech. VAST 4, 283–291 (2011)

    Google Scholar 

  29. Liang C., Rogers C.A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 1, 207–234 (1990)

    Article  Google Scholar 

  30. Likhachev A.A., Koval Y.N.: On the differential equation describing the hysteresis behavior of shape memory alloys. Scr. Metal. Mater. 27, 223–227 (1992)

    Article  Google Scholar 

  31. Lubliner J.: A simple theory of plasticity. Int. J. Solids Struct. 10, 313–319 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lubliner J.: Normality rules in large-deformation plasticity. Mech. Matls 5, 29–34 (1986)

    Article  Google Scholar 

  33. Lubliner, J.: Non-isothermal generalized plasticity. In: Bui, H.D., Nyugen, Q.S. (eds.) Thermomechanical Couplings in Solids, pp. 121–133 (1987)

  34. Lubliner J., Panoskaltsis V.P.: The modified Kuhn model of linear viscoelasticity. Int. J. Solids Struct. 29(24), 3099–3112 (1992)

    Article  MATH  Google Scholar 

  35. Lubliner J., Auricchio F.: Generalized plasticity and shape memory alloys. Int. J. Solids Struct. 33, 991–1004 (1996)

    Article  MATH  Google Scholar 

  36. Magge C.L.: The Nucleation of Martensite, In Phase Transformations. American Society of Metals, Metals Park (1970)

    Google Scholar 

  37. Malukhin K., Ehmann K.: A model of the kinetics of the temperature—induced phase induced phase transformation in NiTi alloys and its experimental verification. J. Intell. Mater. Syst. Struct. 23, 35–44 (2012)

    Article  Google Scholar 

  38. Martin R.H.: Differential equations on closed subsets of a Banach space. Trans. Am. Math. Soc. A. 251, 356–362 (1973)

    Google Scholar 

  39. Marketz F., Fischer F.D.: Modeling the mechanical behavior of shape memory alloys under variant coalescence. Comput. Mater. Sci. 5, 210–226 (1996)

    Article  Google Scholar 

  40. Meyers A., Xiao H., Bruhns O.: Elastic stress ratcheting and corotational stress rates. Tech. Mech. 23, 92–102 (2003)

    Google Scholar 

  41. Mielke A., Rubíc̆ek T.: A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1, 571–597 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Müller Ch., Bruhns O.T.: A thermodynamic finite–strain model for pseudoelastic shape memory alloys. Int. J. Plast. 22, 1658–1682 (2006)

    Article  MATH  Google Scholar 

  43. Naghdi P.M.: A critical review of the state of finite plasticity. Z. Angew. Math. Phys. (J. Appl. Math. Phys. ZAMP) 41, 315–387 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ortiz M.: Plastic yielding as a phase transition. ASME J. Appl. Mech. 66, 289–298 (1999)

    Article  ADS  Google Scholar 

  45. Panoskaltsis, V.P.: Mechanics of shape memory alloy materials - Constitutive modeling and numerical implications, pp. 131–166. Intech Publications, (2013)

  46. Panoskaltsis V.P., Bahuguna S., Soldatos D.: On the thermomechanical modeling of shape memory alloys. Int. J. Non Linear Mech. 39, 709–722 (2004)

    Article  MATH  Google Scholar 

  47. Panoskaltsis V.P., Polymenakos L.C., Soldatos D.: On large deformation generalized plasticity. J. Mech. Mater. Struct. 3, 441–457 (2008)

    Article  Google Scholar 

  48. Panoskaltsis V.P., Polymenakos L.C., Soldatos D.: Eulerian structure of generalized plasticity: theoretical and computational aspects. J. Eng. Mech. ASCE 134(5), 354–361 (2008)

    Article  Google Scholar 

  49. Panoskaltsis, V.P., Soldatos, D., Triantafyllou, S.P.: Generalized plasticity theory for phase transformations. Procedia Engineering 10 (2011), 3104 – 3108, (Science Direct). 11th International conference on the mechanical behavior of materials, M. Guagliano ed., ICM 11, Milano, Italy, 5–9 June 2011

  50. Panoskaltsis, V.P., Soldatos, D., Triantafyllou, S.P.: A new model for shape memory alloy materials under general states of deformation and temperature conditions. In: Boudouvis, A.G., Stavroulakis, G.E. (eds.) Proceedings of the 7th GRACM international congress on computational mechanics, Athens, Greece, 30 June-2 July 2011

  51. Panoskaltsis, V.P., Polymenakos, L.C., Soldatos, D.: The concept of physical metric in the thermomechanical modeling of shape memory alloys. ASME J. Eng. Mater. Tech. 135(2) (2013)

  52. Ramanathan, G.: Experimental, analytical and computational models for shape memory alloys. M.S. Thesis, Department of Civil Engineering, Case Western Reserve University, Cleveland OH, USA (2002)

  53. Ramanathan, G., Panoskaltsis, V.P., Mullen, R., Welsch, G.: Experimental and computational methods for shape memory alloys. In: Smyth, A. (ed.) Proceedings of the 15th ASCE Engineering Mechanics Conference. Columbia University, NY, 2–5 June 2002

  54. Redheffer R.M.: The theorems of Bony and Brezis on flow invariant sets. Am. Math. Mon. 79, 740–747 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  55. Saint-Sulpice L., Arbab Chirani C., Calloch S.: A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech. Mater. 41, 12–26 (2009)

    Article  Google Scholar 

  56. Savi M.A., Paiva A., Baĕta-Neves P.A., Pacheco P.M.C.L.: Phenomenological modeling and numerical simulation of shape memory alloys: A thermo-plastic-phase transformation coupled model. J. Intell. Mater. Syst. Struct. 19, 261–273 (2002)

    Article  Google Scholar 

  57. Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition Part I: Continuum formulation. Comput Methods Appl. Mech. Eng. 66, 199–219 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Smallman R.E., Bishop R.J.: Modern Physical Metallurgy and Materials Engineering. Butterworth–Heinemann, Stoneham (2000)

  59. Thamburaja P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 53, 825–856 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Thamburaja P.: A finite-deformation-based theory for shape-memory alloys. Int. J. Plast. 26, 1195–1219 (2010)

    Article  MATH  Google Scholar 

  61. Thamburaja P., Anand L.: Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Phys. Solids 49, 709–737 (2000)

    Article  ADS  Google Scholar 

  62. Valanis, K.C.: Irreversible thermodynamics of continuous media, internal variable theory, CISM courses and lectures No. 77, International centre for mechanical sciences. Springer, Wien (1972)

  63. Videnic T., Kosel F., Sajn V., Brojan M.: Biaxial constrained recovery in shape memory alloy rings. J. Intell. Mater. Syst. Struct. 19, 861–874 (2008)

    Article  Google Scholar 

  64. Wayman C.M.: Introduction to the Crystallography of Martensitic Transformation. Macmillan, New York (1964)

    Google Scholar 

  65. Wolf, M., Boettcher, S., Böhm, M.: Phase transformations in steel in the multi-phase case—general modeling and parameter identification. Report 07–02, Zentrum für Technomathematic, Universität Bremen (2007)

  66. Wolf M., Böhm M., Helm D.: Material behavior of steel–Modeling of complex phenomena and thermodynamic consistency. Int. J. Plast. 24, 746–774 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Panoskaltsis.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panoskaltsis, V.P., Soldatos, D. & Triantafyllou, S.P. On phase transformations in shape memory alloy materials and large deformation generalized plasticity. Continuum Mech. Thermodyn. 26, 811–831 (2014). https://doi.org/10.1007/s00161-013-0312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0312-y

Keywords

Navigation