Skip to main content
Log in

Important aspects in the formulation of solid–fluid debris-flow models. Part I. Thermodynamic implications

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid–fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancey C.: Plasticity and geophysical flows: a review. J. Non-Newton. Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  2. Anderson T., Jackson R.: A fluid mechanical description of fluidized beds: equations of motion. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)

    Article  Google Scholar 

  3. Chambon, R.: Une classe de lois de comportement incrémentalement nonlinéaires pour les sols non visqueux, résolution de quelques problèmes de cohérence. C.R. Acad. Sci. 308(II), 1571–1576 (1989) (in French)

  4. Chambon R.: Discussion of paper “shear and objective stress rates in hypoplasticity” by D. Kolymbas and I. Herle. Int. J. Numer. Anal. Methods Geomech. 28, 365–372 (2004)

    Article  Google Scholar 

  5. Chambon, R., Desrues, J.: Bifurcation par localisation et non linéarité incrémentale: un example heuristique d’analyse complete. In: Plastic Instability, Int. Symp. Plastic Instability, Considere Memorial (1841–1914), pp. 101–113. Ecole nationale des ponts et chaussées, Paris (1985) (in French)

  6. Chambon R., Desrues J., Hammad W., Charlier R.: CloE, a new rate-type constitutive model for geomaterials. Theoretical basis and implementation. Int. J. Numer. Anal. Methods Geomech. 18, 253–278 (1994)

    Article  MATH  Google Scholar 

  7. Darve, F.: Une formulation incrémentale non-linéaire des lois rhéologique; application aux sols. Ph.D. Thesis, Université Scientifique et Médicale de Grenoble (1978) (in French)

  8. Darve F.: The expression of rheological laws in incremental form and the main classes of constitutive equations. In: Darve, F. (ed.) Geomaterials: Constitutive Equations and Modelling, pp. 123–148. Elsevier, Amsterdam (1990)

    Google Scholar 

  9. Denlinger R., Iverson R.: Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J. Geophys. Res. Solid Earth 106, 553–566 (2001)

    Article  Google Scholar 

  10. Drew D., Passman S.: Theory of Multicomponent Fluids, Applied Mathematical Sciences, vol. 135. Springer, London (1999)

    Google Scholar 

  11. Farkas, G.: A Fourier-féle mechanikai elv alkalmazái [On the applications of the mechanical principle of Fourier]. Mathematikai ès Termèszettundaomànyi Értesitö 12, 457–472 (1894) (in Hungarian)

    Google Scholar 

  12. Fernández-Nieto E., Bouchut F., Bresch D., Castro-Diaz M., Mangeney A.: A new Savage–Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 7720–7754 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Harbitz, C.: Snow avalanche modeling, mapping and warning in Europe (SAME). Report of the Fourth European Network Programme: Environment and Climate. Norwegian Geotechnical Institute, Norway (1999)

  14. Hutter K.: Avalanche dynamics. In: Singh, V. (ed.) Hydrology of Disasters, pp. 317–394. Kluwer, Dordrecht (1996)

    Google Scholar 

  15. Hutter K.: Geophysical granular and particle laden flows: review of the field. Philos. Trans. R. Soc. Lond. A 363, 1497–1505 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Hutter K., Jöhnk K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Iverson R.: The physics of debris flows. Rev. Geophys. 35, 245–296 (1997)

    Article  ADS  Google Scholar 

  18. Iverson R.: Forecasting runout of rock and debris avalanches. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R. (eds) Landslides from Massive Rock Slope Failure, NATO Science Series, vol. 49, pp. 197–209. Springer, Berlin (2003)

    Google Scholar 

  19. Iverson R.: Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. Solid Earth 110, F02015 (2005)

    Article  Google Scholar 

  20. Iverson R., Denlinger R.: Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J. Geophys. Res. Solid Earth 106, 537–552 (2001)

    Article  Google Scholar 

  21. Jackson R.: The Dynamics of Fluidized Particles. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  22. Kirchner, N.: Thermodynamics of structured granular materials. Ph.D. Thesis, Institut für Mechanik AG III, Technische Universität Darmstadt, Germany (2001)

  23. Kolymbas, D.: Eine Konstitutive Theorie für Böden und andere Körnige Stoffe. Ph.D. Thesis, University of Karlsruhe, Germany (1978) (in German)

  24. Liu I.S.: Method of Lagrange mulitpliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    MATH  Google Scholar 

  25. Luca I., Hutter K., Tai Y.C., Kuo C.Y.: A hierachy of avalanche models on arbitrary topography. Acta Mech. 205, 121–149 (2009)

    Article  MATH  Google Scholar 

  26. Luca, I., Kuo, C.Y., Hutter, K., Tai, Y.C.: Modeling shallow over-saturated mixtures on arbitrary rigid topography. Submitted to Acta Mech. (2009)

  27. Luca I., Tai Y.C., Kuo C.Y.: Modeling shallow gravity-driven solid–fluid mixtures over arbitrary topography. Commun. Math. Sci. 7, 1–36 (2009)

    MATH  MathSciNet  Google Scholar 

  28. McDougall S., Hungr O.: Dynamic modelling of entrainment in rapid landslides. Can. Geotech. J. 42, 1437–1448 (2005)

    Article  Google Scholar 

  29. McDougall S., Hungr O.: A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 41, 1084–1097 (2005)

    Article  Google Scholar 

  30. Müller I.: Thermodynamics. Pitman, Boston (1985)

    MATH  Google Scholar 

  31. Pitman E., Le L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. Lond. A 363, 1573–1601 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Pudasaini S., Hutter K.: Avalanche Dynamics, Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2006)

    Google Scholar 

  33. Pudasaini S., Wang Y., Hutter K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)

    Article  ADS  Google Scholar 

  34. Rankine W.: On the stability of loose earth. Philos. Trans. R. Soc. Lond. 147, 9–27 (1857)

    Article  Google Scholar 

  35. Schneider L., Hutter K.: Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin (2009)

    Book  Google Scholar 

  36. Svendsen B., Hutter K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33, 2021–2054 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Svendsen B., Hutter K., Laloui L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Continuum Mech. Thermodyn. 4, 263–275 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  38. Truesdell C.: Rational Thermodynamics, 2nd edn. Springer, Berlin (1984)

    MATH  Google Scholar 

  39. Zhu H., Kim Y., Kee D.: Non-Newtonian fluids with a yield stress. J. Non-Newton. Fluid Mech. 129, 177–181 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter.

Additional information

Communicated by S. Roux.

Dedicated to Professor Dr.-Ing. Krzysztof Wilmański on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutter, K., Schneider, L. Important aspects in the formulation of solid–fluid debris-flow models. Part I. Thermodynamic implications. Continuum Mech. Thermodyn. 22, 363–390 (2010). https://doi.org/10.1007/s00161-010-0153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0153-x

Keywords

Navigation