Skip to main content
Log in

Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study a fully inertial model of a martensitic phase transition in a one-dimensional crystal lattice with long-range interactions. The model allows one to represent a broad range of dynamic regimes, from underdamped to overdamped. We systematically compare the discrete model with its various continuum counterparts including elastic, viscoelastic and viscosity-capillarity models. Each of these models generates a particular kinetic relation which links the driving force with the phase boundary velocity. We find that the viscoelastic model provides an upper bound for the critical driving force predicted by the discrete model, while the viscosity-capillarity model delivers a lower bound. We show that at near-sonic velocities, where inertia dominates dispersion, both discrete and continuum models behave qualitatively similarly. At small velocities, and in particular near the depinning threshold, the discreteness prevails and predictions of the continuum models cannot be trusted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R. and Knowles J.K. (1993). A continuum model of a thermoelastic solid capable of undergoing phase transitions. J. Mech. Phys. Solids 41: 541–571

    Article  MathSciNet  MATH  Google Scholar 

  2. Braun O.M., Kivshar Yu.S. and Zelenskaya I.I. (1990). Kinks in the Frenkel–Kontorova model with long-range interparticle interactions. Phys. Rev. B 41: 7118–7138

    Article  Google Scholar 

  3. Carpio A. and Bonilla L.L. (2003). Depinning transitions in discrete reaction-diffusion equations. SIAM J. Appl. Math. 63(3): 1056–1082

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpio A. and Bonilla L.L. (2003). Oscillatory wave front in chains of coupled nonlinear oscillators. Phys. Rev. E 67: 056621

    Article  MathSciNet  Google Scholar 

  5. Charlotte, M., Truskinovsky, L.: Towards multi-scale continuum elasticity theory. Cont. Mech. Thermodyn. (2007)

  6. Fan H. and Slemrod M. (2002). Dynamic flows with liquid/vapor phase transitions. In: Serre, D. and Friedlander, S. (eds) Handbook of Mathematical Fluid Dynamics, vol. 1, pp 373–420. Elsevier, Amsterdam

    Chapter  Google Scholar 

  7. Fáth G. (1998). Propagation failure of traveling waves in discrete bistable medium. Physica D 116: 176–190

    Article  MathSciNet  MATH  Google Scholar 

  8. Hobart, R.: Peierls stress dependence on dislocation width. J. Appl. Phys. 36(6) (1965)

  9. Keener J.P. (1987). Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3): 556–572

    Article  MathSciNet  MATH  Google Scholar 

  10. Kevrekidis P.G., Kevrekidis I.G., Bishop A.R. and Titi E.S. (2002). Continuum approach to discreteness. Phys. Rev. E 65: 046613

    Article  MathSciNet  Google Scholar 

  11. Kresse O. and Truskinovsky L. (2003). Mobility of lattice defects: discrete and continuum approaches. J. Mech. Phys. Solids 51: 1305–1332

    Article  MathSciNet  MATH  Google Scholar 

  12. Kresse O. and Truskinovsky L. (2004). Lattice friction for crystalline defects: from dislocations to cracks. J. Mech. Phys. Solids 52: 2521–2543

    Article  MathSciNet  MATH  Google Scholar 

  13. Kresse O. and Truskinovsky L. (2007). Prototypical lattice model of a moving defect: the role of environmental viscosity. Izvestiya, Phys. Solid Earth 43: 63–66

    Article  Google Scholar 

  14. Krishnan R.V. (1985). Stress induced martensitic transformations. Mater. Sci. Forum. 3: 387–398

    Article  Google Scholar 

  15. Lax P.D. (1971). Hyperbolic Systems of Conservation Laws and Mathematical Theory of Shock Waves. SIAM, Philadelphia

    Google Scholar 

  16. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. ETH Lecture Note Series. Birkhouser (2002)

  17. Lookman T., Shenoy S.R., Rasmussen K.O., Saxena A. and Bishop A.R. (2003). Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67(2): 024114

    Article  Google Scholar 

  18. Ngan S.-C. and Truskinovsky L. (2002). Thermo-elastic aspects of dynamic nucleation. J. Mech. Phys. Solids 50: 1193–1229

    Article  MathSciNet  MATH  Google Scholar 

  19. Oleinik O. (1963). Discontinous solutions of nonlinear differential equations. Amer. Math. Soc. Transl. Ser. 26: 95–172

    MathSciNet  Google Scholar 

  20. Olson G.B., Owen W.S. (eds) (1992). Martensite. ASM International, Materials Park, OH

    Google Scholar 

  21. Otsuka K., Wayman C.M.L. (eds) (1998). Shape Memory Materials. Cambridge University Press, Cambridge

    Google Scholar 

  22. Pego R. (1987). Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability. Arch. Ration. Mech. Anal. 97: 353–394

    Article  MathSciNet  MATH  Google Scholar 

  23. Pitteri M. and Zanzotto G. (2004). Continuum Theories for Phase Transitions and Twinning in Crystals. Chapman and Hall, London

    Google Scholar 

  24. Puglisi G. and Truskinovsky L. (2005). Thermodynamics of rate independent plasticity. J. Mech. Phys. Solids 53: 655–679

    Article  MathSciNet  MATH  Google Scholar 

  25. Salje E.K.H. (1993). Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge University Press, Cambridge

    Google Scholar 

  26. Shaw J.A. and Kyriakides S. (1997). On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45: 683–700

    Article  Google Scholar 

  27. Slemrod M. (1983). Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81: 301–315

    Article  MathSciNet  MATH  Google Scholar 

  28. Slepyan L.I. (2001). Feeding and dissipative waves in fracture and phase transition ii. phase-transition waves. J. Mech. Phys. Solids 49: 513–550

    Article  MathSciNet  Google Scholar 

  29. Slepyan L.I., Cherkaev A. and Cherkaev E. (2005). Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53: 407–436

    Article  MathSciNet  MATH  Google Scholar 

  30. Slepyan L.I. and Troyankina L.V. (1984). Fracture wave in a chain structure. J. Appl. Mech. Tech. Phys. 25(6): 921–927

    Article  Google Scholar 

  31. Truskinovsky L. (1982). Equilibrium interphase boundaries. Sov. Phys. Doklady 27: 306–331

    Google Scholar 

  32. Truskinovsky L. (1987). Dynamics of nonequilibrium phase boundaries in a heat conducting elastic medium. J. Appl. Math. Mech. 51: 777–784

    Article  MathSciNet  Google Scholar 

  33. Truskinovsky L. (1993). Kinks versus shocks. In: Dunn, E., Fosdick, R. and Slemrod, M. (eds) Shock Induced Transitions and Phase Structures in General Media, vol. 52 of IMA, pp 185–229. Springer, Berlin

    Google Scholar 

  34. Truskinovsky L. (1994). About the “normal growth” approximation in the dynamic theory of phase transitions. Continuum Mech. Thermodyn. 6: 185–208

    Article  MathSciNet  MATH  Google Scholar 

  35. Truskinovsky L. and Vainchtein A. (2003). Peierls-Nabarro landscape for martensitic phase transitions. Phys. Rev. B 67: 172103

    Article  Google Scholar 

  36. Truskinovsky L. and Vainchtein A. (2004). The origin of nucleation peak in transformational plasticity. J. Mech. Phys. Solids 52: 1421–1446

    Article  MathSciNet  MATH  Google Scholar 

  37. Truskinovsky L. and Vainchtein A. (2005). Explicit kinetic relation from “first principles”. In: Steinmann, P. and Maugin, G.A. (eds) Mechanics of Material Forces, pp 43–50. Springer, Berlin

    Chapter  Google Scholar 

  38. Truskinovsky L. and Vainchtein A. (2005). Kinetics of martensitic phase transitions: Lattice model. SIAM J. Appl. Math. 66: 533–553

    Article  MathSciNet  MATH  Google Scholar 

  39. Truskinovsky L. and Vainchtein A. (2006). Quasicontinuum models of dynamic phase transitions. Continuum Mech. Thermodyn. 18(1–2): 1–21

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Truskinovsky.

Additional information

Communicated by M. Slemrod

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truskinovsky, L., Vainchtein, A. Dynamics of martensitic phase boundaries: discreteness, dissipation and inertia. Continuum Mech. Thermodyn. 20, 97–122 (2008). https://doi.org/10.1007/s00161-008-0069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0069-x

Keywords

PACS

Navigation