Skip to main content

Advertisement

Log in

Mass loss from hot massive stars

The Astronomy and Astrophysics Review Aims and scope

Abstract

Mass loss is a key process in the evolution of massive stars, and must be understood quantitatively if it is to be successfully included in broader astrophysical applications such as galactic and cosmic evolution and ionization. In this review, we discuss various aspects of radiation driven mass loss, both from the theoretical and the observational side. We focus on developments in the past decade, concentrating on the winds from OB-stars, with some excursions to the winds from Luminous Blue Variables (including super-Eddington, continuum-driven winds), winds from Wolf–Rayet stars, A-supergiants and Central Stars of Planetary Nebulae. After recapitulating the 1-D, stationary standard model of line-driven winds, extensions accounting for rotation and magnetic fields are discussed. Stationary wind models are presented that provide theoretical predictions for the mass-loss rates as a function of spectral type, metallicity, and the proximity to the Eddington limit. The relevance of the so-called bi-stability jump is outlined. We summarize diagnostical methods to infer wind properties from observations, and compare the results from corresponding campaigns (including the VLT-flames survey of massive stars) with theoretical predictions, featuring the mass loss-metallicity dependence. Subsequently, we concentrate on two urgent problems, weak winds and wind-clumping, that have been identified from various diagnostics and that challenge our present understanding of radiation driven winds. We discuss the problems of “measuring” mass-loss rates from weak winds and the potential of the NIR Br α -line as a tool to enable a more precise quantification, and comment on physical explanations for mass-loss rates that are much lower than predicted by the standard model. Wind-clumping, conventionally interpreted as the consequence of a strong instability inherent to radiative line-driving, has severe implications for the interpretation of observational diagnostics, since derived mass-loss rates are usually overestimated when clumping is present but ignored in the analyses. Depending on the specific diagnostics, such overestimates can amount to factors of 2 to 10, and we describe ongoing attempts to allow for more uniform results. We point out that independent arguments from stellar evolution favor a moderate reduction of present-day mass-loss rates. We also consider larger scale wind structure, interpreted in terms of co-rotating interacting regions, and complete this review with a discussion of recent progress on the X-ray line emission from massive stars. Such emission is thought to originate both from magnetically confined winds and from non-magnetic winds, in the latter case related to the line-driven instability and/or clump-clump collisions. We highlight as to how far the analysis of such X-ray line emission can give further clues regarding an adequate description of wind clumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abbott DC (1980) The theory of radiatively driven stellar winds. I—A physical interpretation. ApJ 242: 1183–1207

    ADS  Google Scholar 

  • Abbott DC (1982) The theory of radiatively driven stellar winds. II—The line acceleration. ApJ 259: 282–301

    ADS  Google Scholar 

  • Abbott DC (1984) The theory of radiative driven winds from early-type stars. In: Stalio R (ed) Relations Between Chromospheric-Coronal Heating and Mass Loss in Stars, p 265

  • Abbott DC, Hummer DG (1985) Photospheres of hot stars. I—Wind-blanketed model atmospheres. ApJ 294: 286–302

    ADS  Google Scholar 

  • Abbott DC, Lucy LB (1985) Multiline transfer and the dynamics of stellar winds. ApJ 288: 679–693

    ADS  Google Scholar 

  • Abbott DC, Bieging JH, Churchwell E, Cassinelli JP (1980) VLA radio continuum measurements of mass loss from early-type stars. ApJ 238: 196–202

    ADS  Google Scholar 

  • Abbott DC, Bieging JH, Churchwell E (1981a) Mass loss from very luminous OB stars and the Cygnus superbubble. ApJ 250: 645–659

    ADS  Google Scholar 

  • Abbott DC, Bieging JH, Churchwell E (1981b) Mass loss from very luminous OB stars and the Cygnus superbubble. ApJ 250: 645–659

    ADS  Google Scholar 

  • Abbott DC, Bieging JH, Churchwell E (1984) The detection of variable, nonthermal radio emission from two O type star. ApJ 280: 671–678

    ADS  Google Scholar 

  • Abel T, Bryan GL, Norman ML (2000) The formation and fragmentation of primordial molecular clouds. ApJ 540: 39–44

    ADS  Google Scholar 

  • Anderson LS (1985) Line blanketing without local thermodynamic equilibrium. I—A hydrostatic stellar atmosphere with hydrogen, helium, and carbon lines. ApJ 298: 848–858

    ADS  Google Scholar 

  • Anderson LS (1989) Line blanketing without local thermodynamic equilibrium. II—A solar-type model in radiative equilibrium. ApJ 339: 558–578

    ADS  Google Scholar 

  • Auer LH, Mihalas D (1969) Brackett-alpha emission in non-LTE model stellar atmospheres. ApJL 156: L151

    ADS  Google Scholar 

  • Babel J (1995) Multi-component radiatively driven winds from A and B stars. I. The metallic wind of a main sequence A star. A&A 301: 823

    ADS  Google Scholar 

  • Babel J (1996) The fading of radiatively driven winds in B stars. A&A 309: 867–878

    ADS  Google Scholar 

  • Babel J, Montmerle T (1997a) On the periodic X-ray emission from the O7 V star Theta 1 Orionis C. ApJL 485: L29

    ADS  Google Scholar 

  • Babel J, Montmerle T (1997b) X-ray emission from Ap-Bp stars: a magnetically confined wind-shock model for IQ Aur. A&A 323: 121–138

    ADS  Google Scholar 

  • Baraffe I, Heger A, Woosley SE (2001) On the stability of very massive primordial stars. ApJ 550: 890–896

    ADS  Google Scholar 

  • Barton EJ, Davé R, Smith JDT, Papovich C, Hernquist L, Springel V (2004) Searching for Star Formation beyond Reionization. ApJL 604: L1–L4

    ADS  Google Scholar 

  • Bates B, Gilheany S (1990) IUE observations of mass-loss spectral features in B5–B9 supergiants. MNRAS 243: 320–329

    ADS  Google Scholar 

  • Bell AR (1978a) The acceleration of cosmic rays in shock fronts. I. MNRAS 182: 147–156

    ADS  Google Scholar 

  • Bell AR (1978b) The acceleration of cosmic rays in shock fronts. II. MNRAS 182: 443–455

    ADS  Google Scholar 

  • Benaglia P, Vink JS, Martí J, Maíz Apellániz J, Koribalski B, Crowther PA (2007) Testing the predicted mass-loss bi-stability jump at radio wavelengths. A&A 467: 1265–1274

    ADS  Google Scholar 

  • Berghoefer TW, Schmitt JHMM (1994) ROSAT X-ray light curves of early-type stars. Ap&SS 221: 309–320

    ADS  Google Scholar 

  • Berghoefer TW, Baade D, Schmitt JHMM, Kudritzki RP, Puls J, Hillier DJ, Pauldrach AWA (1996) Correlated variability in the X-ray and Hα emission from the O4If supergiant ζ Puppis. A&A 306: 899

    ADS  Google Scholar 

  • Bianchi L, Garcia M (2002) The effective temperatures of mid-O stars. ApJ 581: 610–625

    ADS  Google Scholar 

  • Bieging JH, Abbott DC, Churchwell EB (1989) A survey of radio emission from Galactic OB stars. ApJ 340: 518–536

    ADS  Google Scholar 

  • Bjorkman JE, Cassinelli JP (1993) Equatorial disk formation around rotating stars due to Ram pressure confinement by the stellar wind. ApJ 409: 429–449

    ADS  Google Scholar 

  • Blandford RD, Ostriker JP (1978) Particle acceleration by astrophysical shocks. ApJL 221: L29–L32

    ADS  Google Scholar 

  • Bouret JC, Lanz T, Hillier DJ, Heap SR, Hubeny I, Lennon DJ, Smith LJ, Evans CJ (2003) Quantitative spectroscopy of O stars at low metallicity: O dwarfs in NGC 346. ApJ 595: 1182–1205

    ADS  Google Scholar 

  • Bouret JC, Lanz T, Hillier DJ (2005) Lower mass loss rates in O-type stars: spectral signatures of dense clumps in the wind of two Galactic O4 stars. A&A 438: 301–316

    ADS  Google Scholar 

  • Bouret JC, Hillier DJ, Lanz T (2008) Clumping and rotation in ζ Puppis. In: Bresolin F, Crowther PA, Puls J (eds) Massive stars as cosmic engines, IAU Symposium, vol 250

  • Braithwaite J, Nordlund Å (2006) Stable magnetic fields in stellar interiors. A&A 450: 1077–1095

    MATH  ADS  Google Scholar 

  • Braithwaite J, Spruit HC (2004) A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431: 819–821

    ADS  Google Scholar 

  • Bresolin F, Kudritzki RP (2004) Stellar winds of hot massive stars nearby and beyond the local group. In: McWilliam A, Rauch M (eds) Origin and evolution of the elements, p 283

  • Bresolin F, Crowther PA, Puls J (eds) (2008) IAU 250 Massive stars as cosmic engines, IAU Symposium, vol 250

  • Bromm V, Kudritzki RP, Loeb A (2001) Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. ApJ 552: 464–472

    ADS  Google Scholar 

  • Brott I, Hunter I, Anders P, Langer N (2008) How efficient is rotational mixing in massive stars? In: First Stars III, American Institute of Physics Conference Series, vol 990, pp 273–275

  • Carlberg RG (1980) The instability of radiation-driven stellar winds. ApJ 241:1131–1140

    ADS  Google Scholar 

  • Cassinelli JP, MacGregor KB (2000) The rise of a magnetic flux tube through the radiative envelope of a 9 M_solar Star. In: Smith MA, Henrichs HF, Fabregat J (eds) IAU Colloq. 175: the Be phenomenon in early-type stars, Astronomical Society of the Pacific Conference Series, vol 214, p 337

  • Cassinelli JP, Cohen DH, Macfarlane JJ, Sanders WT, Welsh BY (1994) X-ray emission from near-main-sequence B stars. ApJ 421: 705–717

    ADS  Google Scholar 

  • Cassinelli JP, Brown JC, Maheswaran M, Miller NA, Telfer DC (2002) A magnetically torqued disk model for Be stars. ApJ 578: 951–966

    ADS  Google Scholar 

  • Cassinelli JP, Ignace R, Waldron W, Cho J, Murphy N, Lazarian A (2008) X-ray line emission produced in clump bow shocks. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 217–219

  • Castor JI (1979) Radiatively-driven winds—model improvements, ionization balance and the infrared spectrum. In: Conti PS, de Loore CWH (eds) Mass loss and evolution of O-type stars, IAU Symposium, vol 83, pp 175–189

  • Castor JI, Abbott DC, Klein RI (1975) Radiation-driven winds in Of stars. ApJ 195: 157–174

    ADS  Google Scholar 

  • Chen W, White RL (1994) Nonthermal radio emission from hot star winds: its origin and physical implications. Ap&SS 221: 259–272

    ADS  Google Scholar 

  • Cherepashchuk AM, Khaliullin KF, Eaton JA (1984) Ultraviolet photometry from the orbiting astronomical observatory. XXXIX—The structure of the eclipsing Wolf–Rayet binary V444 Cygni as derived from light curves between 2460 A and 3.5 microns. ApJ 281:774–788

    Google Scholar 

  • Chesneau O, Roche M, Boccaletti A, Abe L, Moutou C, Charbonnier F, Aime C, Lanteri H, Vakili F (2000) Adaptive optics imaging of P Cygni in Halpha. A&AS 144: 523–532

    ADS  Google Scholar 

  • Chlebowski T, Garmany CD (1991) On winds and X-rays of O-type stars. ApJ 368: 241–251

    ADS  Google Scholar 

  • Code A, Whitney B (1995) Polarization from scattering in blobs. ApJ 441: 400–407

    ADS  Google Scholar 

  • Cohen DH (2008) X-ray Emission from O Stars. In: Bresolin F, Crowther PA, Puls J (eds) Massive Stars as Cosmic Engines, IAU Symposium, vol 250

  • Collins GW II (1963) Continuum emission from a rapidly rotating stellar atmosphere. ApJ 138: 1134

    ADS  Google Scholar 

  • Collins GW II, Harrington JP (1966) Theoretical H-Beta line profiles and related parameters for rotating B stars. ApJ 146: 152

    ADS  Google Scholar 

  • Cox P, Mezger PG, Sievers A, Najarro F, Bronfman L, Kreysa E, Haslam G (1995) Millimeter emission of eta Carinae and its surroundings. A&A 297: 168–174

    ADS  Google Scholar 

  • Cranmer SR, Owocki SP (1995) The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars. ApJ 440: 308–321

    ADS  Google Scholar 

  • Cranmer SR, Owocki SP (1996) Hydrodynamical simulations of corotating interaction regions and discrete absorption components in rotating O-star winds. ApJ 462: 469

    ADS  Google Scholar 

  • Crowther P (2007) Physical properties of Wolf–Rayet stars. ARA&A 45: 177–219

    ADS  Google Scholar 

  • Crowther PA, Hillier DJ, Evans CJ, Fullerton AW, De Marco O, Willis AJ (2002) Revised stellar temperatures for Magellanic Cloud O supergiants from far ultraviolet spectroscopic explorer and very large telescope UV-visual echelle spectrograph spectroscopy. ApJ 579: 774–799

    ADS  Google Scholar 

  • Crowther PA, Lennon DJ, Walborn NR (2006) Physical parameters and wind properties of Galactic early B supergiants. A&A 446: 279–293

    ADS  Google Scholar 

  • Curé M (2004) The influence of rotation in radiation-driven wind from hot stars: new solutions and disk formation in Be stars. ApJ 614: 929–941

    ADS  Google Scholar 

  • Curé M, Rial DF (2004) The influence of rotation in radiation driven winds from hot stars. II. CAK topological analysis. A&A 428: 545–554

    ADS  Google Scholar 

  • Curé M, Rial DF, Cidale L (2005) Outflowing disk formation in B[e] supergiants due to rotation and bi-stability in radiation driven winds. A&A 437: 929–933

    ADS  Google Scholar 

  • Davidson K (1987) The relation between apparent temperature and mass-loss rate in hypergiant eruptions. ApJ 317: 760–764

    ADS  Google Scholar 

  • Davies B, Oudmaijer R, Vink J (2005) Asphericity and clumpiness in the winds of Luminous Blue Variables. A&A 439: 1107–1125

    ADS  Google Scholar 

  • Davies B, Vink J, Oudmaijer R (2007) Modelling the clumping-induced polarimetric variability of hot star winds. A&A 469: 1045–1056

    ADS  Google Scholar 

  • de Araujo FX (1995) The equatorial plane of Be stars: an outflow driven by optically thin lines?. A&A 298: 179

    ADS  Google Scholar 

  • De Becker M (2007) Non-thermal emission processes in massive binaries. A&Ar 14: 171–216

    ADS  Google Scholar 

  • de Koter A, Lamers HJGLM, Schmutz W (1996) Variability of luminous blue variables. II. Parameter study of the typical LBV variations. A&A 306: 501

    ADS  Google Scholar 

  • de Koter A, Vink J, Muijres L (2008) Constraints on wind clumping form the empirical mass-loss vs. metallicity relation for early-type stars. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 47–49

  • Dessart L, Owocki SP (2002a) Emission profile variability in hot star winds. A pseudo-method based on radiation hydrodynamics simulations. A&A 3(383): 1113–1124

    ADS  Google Scholar 

  • Dessart L, Owocki SP (2002b) Wavelet analysis of instability-generated line profile variations in hot-star winds. A&A 393: 991–996

    ADS  Google Scholar 

  • Dessart L, Owocki SP (2003) Two-dimensional simulations of the line-driven instability in hot-star winds. A&A 406: L1–L4

    ADS  Google Scholar 

  • Dessart L, Owocki SP (2005) 2D simulations of the line-driven instability in hot-star winds. II. Approximations for the 2D radiation force. A&A 437: 657–666

    ADS  Google Scholar 

  • Domiciano de Souza A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F (2003) The spinning-top Be star Achernar from VLTI-VINCI. A&A 407: L47–L50

    ADS  Google Scholar 

  • Donati JF, Semel M, Carter BD, Rees DE, Collier Cameron A (1997) Spectropolarimetric observations of active stars. MNRAS 291: 658

    ADS  Google Scholar 

  • Donati JF, Babel J, Harries TJ, Howarth ID, Petit P, Semel M (2002) The magnetic field and wind confinement of θ1 Orionis C. MNRAS 333: 55–70

    ADS  Google Scholar 

  • Donati JF, Howarth ID, Jardine MM, Petit P, Catala C, Landstreet JD, Bouret JC, Alecian E, Barnes JR, Forveille T, Paletou F, Manset N (2006) The surprising magnetic topology of τ Sco: fossil remnant or dynamo output?. MNRAS 370: 629–644

    ADS  Google Scholar 

  • Dougherty SM, Williams PM (2000) Non-thermal emission in Wolf–Rayet stars: are massive companions required?. MNRAS 319: 1005–1010

    ADS  Google Scholar 

  • Drew JE (1990) A new theoretical calibration of the relation between mass-loss rate and H-alpha emission for O star winds. ApJ 357: 573–581

    ADS  Google Scholar 

  • Drew JE, Hoare MG, Denby M (1994) Soft X-ray observations of the early B giants Beta and Epsilon CMa. MNRAS 266: 917

    ADS  Google Scholar 

  • Eichler D, Usov V (1993) Particle acceleration and nonthermal radio emission in binaries of early-type stars. ApJ 402: 271–279

    ADS  Google Scholar 

  • Eldridge J, Vink J (2006) Implications of the metallicity dependence of Wolf–Rayet winds. A&A 452: 295–301

    ADS  Google Scholar 

  • Evans CJ, Crowther PA, Fullerton AW, Hillier DJ (2004a) Quantitative studies of the far-ultraviolet, ultraviolet, and optical spectra of late O- and early B-type supergiants in the Magellanic Clouds. ApJ 610: 1021–1037

    ADS  Google Scholar 

  • Evans CJ, Lennon DJ, Trundle C, Heap SR, Lindler DJ (2004b) Terminal velocities of luminous, early-type stars in the small Magellanic Cloud. ApJ 607: 451–459

    ADS  Google Scholar 

  • Evans CJ, Smartt SJ, Lee JK, 23 coauthors (2005) The VLT-FLAMES survey of massive stars: observations in the Galactic clusters NGC 3293, NGC 4755 and NGC 6611. A&A 437:467–482

    Google Scholar 

  • Evans CJ, Lennon DJ, Smartt SJ, Trundle C (2006) The VLT-FLAMES survey of massive stars: observations centered on the Magellanic Cloud clusters NGC 330, NGC 346, NGC 2004, and the N11 region. A&A 456: 623–638

    ADS  Google Scholar 

  • Evans CJ, Hunter I, Smartt SJ, Lennon DJ, de Koter A, Mokiem MR, Trundle C, Dufton PL, Ryans RSI, Puls J, Vink JS, Herrero A, Simon-Diaz S, Langer N, Brott I (2008) The VLT-FLAMES survey of massive stars. ArXiv e-prints 803, 0803.2820

  • Eversberg T, Lepine S, Moffat AFJ (1998) Outmoving clumps in the wind of the hot O supergiant Zeta Puppis. ApJ 494: 799

    ADS  Google Scholar 

  • Feldmeier A (1995) Time-dependent structure and energy transfer in hot star winds. A&A 299: 523

    ADS  Google Scholar 

  • Feldmeier A (1999) The Line-Driven Instability. In: Wolf B, Stahl O, Fullerton AW (eds) IAU Colloq. 169: Variable and Non-spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, vol 523. Springer, Berlin, p 285

  • Feldmeier A, Shlosman I (2000) Runaway of line-driven winds toward critical and overloaded solutions. ApJL 532: L125–L128

    ADS  Google Scholar 

  • Feldmeier A, Shlosman I (2002) Abbott wave-triggered runaway in line-driven winds from stars and accretion disks. ApJ 564: 385–394

    ADS  Google Scholar 

  • Feldmeier A, Puls J, Pauldrach AWA (1997) A possible origin for X-rays from O stars. A&A 322: 878–895

    ADS  Google Scholar 

  • Feldmeier A, Oskinova L, Hamann WR (2003) X-ray line emission from a fragmented stellar wind. A&A 403: 217–224

    ADS  Google Scholar 

  • Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75: 1169–1174

    MATH  ADS  Google Scholar 

  • Figer DF, Najarro F, Morris M, McLean IS, Geballe TR, Ghez AM, Langer N (1998) The pistol star. ApJ 506: 384–404

    ADS  Google Scholar 

  • Figer DF, Najarro F, Gilmore D, Morris M, Kim SS, Serabyn E, McLean IS, Gilbert AM, Graham JR, Larkin JE, Levenson NA, Teplitz HI (2002) Massive stars in the arches cluster. ApJ 581: 258–275

    ADS  Google Scholar 

  • Foellmi C, Moffat AFJ, Guerrero MA (2003a) Wolf–Rayet binaries in the Magellanic Clouds and implications for massive-star evolution—I. Small Magellanic Cloud. MNRAS 338: 360–388

    ADS  Google Scholar 

  • Foellmi C, Moffat AFJ, Guerrero MA (2003b) Wolf–Rayet binaries in the Magellanic Clouds and implications for massive-star evolution—II. Large Magellanic Cloud. MNRAS 338: 1025–1056

    ADS  Google Scholar 

  • Friend DB, Abbott DC (1986) The theory of radiatively driven stellar winds. III—Wind models with finite disk correction and rotation. ApJ 311: 701–707

    ADS  Google Scholar 

  • Friend DB, Castor JI (1983) Stellar winds driven by multiline scattering. ApJ 272: 259–272

    ADS  Google Scholar 

  • Fullerton AW (1999) Rotationally Modulated Winds of O Stars. In: Wolf B, Stahl O, Fullerton AW (eds) IAU Colloq. 169: variable and Non-spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, vol 523. Springer, Berlin, p 3

  • Fullerton AW, Owocki SP (1992) Can Nonstationary Velocity Plateaus Account for Slowly Moving Discrete Absorption Components? (Contributed Poster). In: Drissen L, Leitherer C, Nota A (eds) Nonisotropic and Variable Outflows from Stars, Astronomical Society of the Pacific Conference Series, vol 22, p 177

  • Fullerton AW, Gies DR, Bolton CT (1996) Absorption line profile variations among the O stars. I. The incidence of variability. ApJs 103: 475

    ADS  Google Scholar 

  • Fullerton AW, Massa DL, Prinja RK, Owocki SP, Cranmer SR (1997) Wind variability of B supergiants. III. Corotating spiral structures in the stellar wind of HD 64760. A&A 327: 699–720

    ADS  Google Scholar 

  • Fullerton AW, Massa DL, Prinja RK (2006) The discordance of mass-loss estimates for Galactic O-type stars. ApJ 637: 1025–1039

    ADS  Google Scholar 

  • Fullerton AW, Massa DL, Prinja RK (2008) Revised mass-loss rates for O stars from the Pv resonance line. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 23–26

  • Gabler R, Gabler A, Kudritzki RP, Puls J, Pauldrach A (1989) Unified NLTE model atmospheres including spherical extension and stellar winds—Method and first results. A&A 226: 162–182

    ADS  Google Scholar 

  • Gabler A, Gabler R, Pauldrach A, Puls J, Kudritzki RP (1990) On the use of H-alpha and He II 4686 as mass-loss and luminosity indicators for hot stars. In: Garmany CD (ed) Properties of Hot Luminous Stars, Astronomical Society of the Pacific Conference Series, vol 7, pp 218–229

  • Gabriel AH, Jordan C (1969) Interpretation of solar helium-like ion line intensities. MNRAS 145: 241

    ADS  Google Scholar 

  • Gagné M, Oksala ME, Cohen DH, Tonnesen SK, ud-Doula A, Owocki SP, Townsend RHD, MacFarlane JJ (2005) Chandra HETGS multiphase spectroscopy of the young magnetic O star θ1 Orionis C. ApJ 628: 986–1005

    ADS  Google Scholar 

  • Garcia M (2005) A Study of Massive Stars from High Resolution Spectroscopy in the Far-UV and UV. Ph.D. thesis, University of La Laguna (Teneriffe)

  • Garcia M, Bianchi L (2004) The effective temperatures of hot stars. II. The early-O types. ApJ 606: 497–513

    ADS  Google Scholar 

  • Gautschy A, Glatzel W (1990) On highly non-adiabatic stellar pulsations and the origin of strange modes. MNRAS 245: 597

    ADS  Google Scholar 

  • Gayley KG (1995) An improved line-strength parameterization in hot-star winds. ApJ 454: 410

    ADS  Google Scholar 

  • Gayley KG (2000) The surprisingly weak effect of gravity in retarding hot-star wind acceleration. ApJ 529: 1019–1025

    ADS  Google Scholar 

  • Gayley KG, Owocki SP (1994) Acceleration efficiency in line-driven flows. ApJ 434: 684–694

    ADS  Google Scholar 

  • Gayley KG, Owocki SP, Cranmer SR (1995) Momentum deposition on Wolf–Rayet winds: non-isotropic diffusion with effective gray opacity. ApJ 442: 296–310

    ADS  Google Scholar 

  • Geballe TR, Najarro F, Figer DF (2000) A second luminous blue variable in the quintuplet cluster. ApJL 530: L97–L101

    ADS  Google Scholar 

  • Geballe TR, Najarro F, Rigaut F, Roy JR (2006) The K-Band spectrum of the hot star in IRS 8: an outsider in the Galactic Center?. ApJ 652: 370–375

    ADS  Google Scholar 

  • Georgiev LN, Hillier DJ, Zsargó J (2006) 2D non-LTE modeling for axisymmetric winds. Method and test cases. A&A 458: 597–608

    ADS  Google Scholar 

  • Gieren W, Pietrzynski G, Bresolin F, Kudritzki RP, Minniti D, Urbaneja M, Soszynski I, Storm J, Fouque P, Bono G, Walker A, Garcia J (2005) Measuring improved distances to nearby galaxies: the Araucaria project. The Messenger 121: 23–28

    ADS  Google Scholar 

  • Glatzel W (1998) Remarks on the “Omega-limit”. A&A 339: L5–L8

    ADS  Google Scholar 

  • Glatzel W, Chernigovski S (2001) Strange-mode instabilities in the nonlinear regime. In: de Groot M, Sterken C (eds) P Cygni 2000: 400 Years of Progress, Astronomical Society of the Pacific Conference Series, vol 233, p 227

  • Glatzel W, Kiriakidis M, Fricke KJ (1993) On the stability and pulsations of Wolf–Rayet stars. MNRAS 262: L7–L11

    ADS  Google Scholar 

  • Grady CA, Snow TP Jr, Timothy JG (1983) Observations of Of-star wind variability. ApJ 271: 691–701

    ADS  Google Scholar 

  • Gräfener G, Hamann WR (2005) Hydrodynamic model atmospheres for WR stars. Self-consistent modeling of a WC star wind. A&A 432: 633–645

    ADS  Google Scholar 

  • Gräfener G, Hamann WR (2008) Mass loss from late-type WN stars and its Z-dependence. Very massive stars approaching the Eddington limit. A&A 482: 945–960

    ADS  Google Scholar 

  • Gräfener G, Koesterke L, Hamann WR (2002) Line-blanketed model atmospheres for WR stars. A&A 387: 244–257

    ADS  Google Scholar 

  • Groenewegen MAT, Lamers HJGLM (1989) The winds of O-stars. I—an analysis of the UV line profiles with the SEI method. A&As 79: 359–383

    ADS  Google Scholar 

  • Groenewegen MAT, Lamers HJGLM, Pauldrach AWA (1989) The winds of O-stars. II—The terminal velocities of stellar winds of O-type stars. A&A 221: 78–88

    ADS  Google Scholar 

  • Groote D, Schmitt JHMM (2004) Discovery of X-ray flaring on the magnetic Bp-star σ Ori E. A&A 418:235–242

    ADS  Google Scholar 

  • Hamann WR (1980) The expanding envelope of Zeta Puppis—A detailed UV-line fit. A&A 84: 342–349

    ADS  Google Scholar 

  • Hamann WR (1981a) Line formation in expanding atmospheres—on the validity of the Sobolev approximation. A&A 93: 353–361

    ADS  Google Scholar 

  • Hamann WR (1981b) The expanding envelope of Tau Scorpii—a detailed UV-line fit. A&A 100: 169–174

    ADS  Google Scholar 

  • Hamann WR, Koesterke L (1998) Spectrum formation in clumped stellar winds: consequences for the analyses of Wolf–Rayet spectra. A&A 335: 1003–1008

    ADS  Google Scholar 

  • Hamann WR, Brown JC, Feldmeier A, Oskinova LM (2001) On the wavelength drift of spectral features from structured hot star winds. A&A 378: 946–953

    ADS  Google Scholar 

  • Hamann WR, Feldmeier A, Oskinova LM (2008a) Spectrum formation in clumpy stellar winds. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in Hot-Star Winds, pp 75–80

  • Hamann WR, Oskinova LM, Feldmeier A (eds) (2008b) Clumping in Hot-Star Winds. Universitätsverlag Potsdam, Potsdam

  • Harries T (2000) Synthetic line profiles of rotationally distorted hot-star winds. MNRAS 315: 722–734

    ADS  Google Scholar 

  • Harries T, Hillier DJ, Howarth ID (1998) A spectropolarimetric survey of northern hemisphere Wolf–Rayet stars. MNRAS 296: 1072–1088

    ADS  Google Scholar 

  • Haser SM (1995) UV spectroscopy of hot stars in the Local Group (in German). Ph.D. thesis, Ludwig-Maximilians-Universität München

  • Haser SM, Pauldrach AWA, Lennon DJ, Kudritzki RP, Lennon M, Puls J, Voels SA (1998) Quantitative UV spectroscopy of early O stars in the Magellanic Clouds. The determination of the stellar metallicities. A&A 330: 285–305

    ADS  Google Scholar 

  • Hauschildt PH (1992) A fast operator perturbation method for the solution of the special relativistic equation of radiative transfer in spherical symmetry. J Quant Spectrosc Radiat Transf 47: 433–453

    ADS  Google Scholar 

  • Heap SR, Lanz T, Hubeny I (2006) Fundamental properties of O-type stars. ApJ 638: 409–432

    ADS  Google Scholar 

  • Heger A, Woosley SE, Spruit HC (2005) Presupernova evolution of differentially rotating massive stars including magnetic fields. ApJ 626: 350–363

    ADS  Google Scholar 

  • Henrichs H (1991) Why are winds of O stars variable?. In: Baade D (ed) Rapid Variability of OB-stars: nature and diagnostic value, p 199

  • Henrichs HF, Kaper L, Zwarthoed GAA (1988) Rapid variability in O star winds. In: Rolfe EJ (ed) A Decade of UV Astronomy with the IUE Satellite, vol 2, pp 145–149

  • Herrero A, Puls J, Villamariz MR (2000) Fundamental parameters of Galactic luminous OB stars. IV. The upper HR diagram. A&A 354: 193–215

    ADS  Google Scholar 

  • Herrero A, Puls J, Najarro F (2002) Fundamental parameters of Galactic luminous OB stars VI. Temperatures, masses and WLR of Cyg OB2 supergiants. A&A 396: 949–966

    ADS  Google Scholar 

  • Hillier DJ (1991) The effects of electron scattering and wind clumping for early emission line stars. A&A 247: 455–468

    ADS  Google Scholar 

  • Hillier DJ, Allen DA (1992) A spectroscopic investigation of Eta Carinae and the Homunculus Nebula. I—Overview of the spectra. A&A 262: 153–170

    ADS  Google Scholar 

  • Hillier DJ, Miller DL (1998) The treatment of Non-LTE line blanketing in spherically expanding outflows. ApJ 496: 407

    ADS  Google Scholar 

  • Hillier DJ, Miller DL (1999) Constraints on the evolution of massive stars through spectral analysis. I. The WC5 Star HD 165763. ApJ 519: 354–371

    ADS  Google Scholar 

  • Hillier DJ, Kudritzki RP, Pauldrach AW, Baade D, Cassinelli JP, Puls J, Schmitt JHMM (1993) The 0.1–2.5-KEV X-Ray Spectrum of the O4F-STAR Zeta-Puppis. A&A 276: 117

    ADS  Google Scholar 

  • Hillier DJ, Crowther PA, Najarro F, Fullerton AW (1998) An optical and near-IR spectroscopic study of the extreme P Cygni-type supergiant HDE 316285. A&A 340: 483–496

    ADS  Google Scholar 

  • Hillier DJ, Davidson K, Ishibashi K, Gull T (2001) On the nature of the central source in η Carinae. ApJ 553: 837–860

    ADS  Google Scholar 

  • Hillier DJ, Lanz T, Heap SR, Hubeny I, Smith LJ, Evans CJ, Lennon DJ, Bouret JC (2003) A tale of two stars: the extreme O7 Iaf+ supergiant AV 83 and the OC7.5 III((f)) star AV 69. ApJ 588: 1039–1063

    ADS  Google Scholar 

  • Hirschi R (2008) The impact of reduced mass loss rates on the evolution of massive stars. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 9–14

  • Holzer TE (1977) Effects of rapidly diverging flow, heat addition, and momentum addition in the solar wind and stellar winds. J Geophys Res 82: 23–35

    ADS  Google Scholar 

  • Howarth ID (1992) Intrinsic Stellar-Wind Variability (Invited Paper). In: Drissen L, Leitherer C, Nota A (eds) Nonisotropic and Variable Outflows from Stars, Astronomical Society of the Pacific Conference Series, vol 22, p 155

  • Howarth ID, Prinja RK (1989) The stellar winds of 203 Galactic O stars—a quantitative ultraviolet survey. ApJs 69: 527–592

    ADS  Google Scholar 

  • Howarth ID, Prinja RK, Massa D (1995) The IUE MEGA campaign: the rotationally modulated wind of Zeta Puppis. ApJL 452: L65

    ADS  Google Scholar 

  • Hubeny I (1998) Non-LTE line-blanketed model atmospheres of hot stars. In: Chan KL, Cheng KS, Singh HP (eds) 1997 Pacific Rim Conference on Stellar Astrophysics, Astronomical Society of the Pacific Conference Series, vol 138, p 139

  • Hultzsch PJN, Puls J, Méndez RH, Pauldrach AWA, Kudritzki RP, Hoffmann TL, McCarthy JK (2007) Central stars of planetary nebulae in the Galactic bulge. A&A 467: 1253–1264

    ADS  Google Scholar 

  • Ignace R, Oskinova L (1999) An explanation of observed trends in the X-ray emission from single Wolf–Rayet stars. A&A 348: L45–L48

    ADS  Google Scholar 

  • Johnson JL, Greif TH, Bromm V (2008) The first stars. In: Bresolin F, Puls J (eds) IAU 250 Massive Stars as Cosmic Engines

  • Kaper L, Henrichs HF, Fullerton AW, Ando H, Bjorkman KS, Gies DR, Hirata R, Kambe E, McDavid D, Nichols JS (1997) Coordinated ultraviolet and Hα spectroscopy of bright O-type stars. A&A 327: 281–298

    ADS  Google Scholar 

  • Kaper L, Henrichs HF, Nichols JS, Telting JH (1999) Long- and short-term variability in O-star winds. II. Quantitative analysis of DAC behaviour. A&A 344: 231–262

    ADS  Google Scholar 

  • Kato M (1985) A new type of solution for very massive stars and the occurrence of steady mass loss. PASJ 37: 311–323

    ADS  Google Scholar 

  • Kaufer A, Stahl O, Wolf B, Gaeng T, Gummersbach CA, Kovacs J, Mandel H, Szeifert T (1996) Long-term spectroscopic monitoring of BA-type supergiants. I. Ha line-profile variability. A&A 305: 887

    ADS  Google Scholar 

  • Kaufer A, Stahl O, Prinja RK, Witherick D (2006) Multi-periodic photospheric pulsations and connected wind structures in HD 64760. A&A 447: 325–341

    ADS  Google Scholar 

  • Klein RI, Castor JI (1978) H and He II spectra of Of stars. ApJ 220: 902–923

    ADS  Google Scholar 

  • Kobulnicky HA, Fryer CL (2007) A new look at the binary characteristics of massive stars. ApJ 670: 747–765

    ADS  Google Scholar 

  • Kotak R, Vink JS (2006) Luminous blue variables as the progenitors of supernovae with quasi-periodic radio modulations. A&A 460: L5–L8

    ADS  Google Scholar 

  • Kramer RH, Cohen DH, Owocki SP (2003) X-Ray emission-line profile modeling of O Stars: fitting a spherically symmetric analytic wind-shock model to the chandra spectrum of ζ Puppis. ApJ 592: 532–538

    ADS  Google Scholar 

  • Krtička J (2006) NLTE models of line-driven stellar winds—II. O stars in the Small Magellanic Cloud. MNRAS, p 266

  • Krtička J, Kubát J (2000) Isothermal two-component stellar wind of hot stars. A&A 359: 983–990

    ADS  Google Scholar 

  • Krtička J, Kubat J (2006) The winds of hot massive first stars. A&A 446: 1039–1049

    ADS  Google Scholar 

  • Krtička J, Owocki SP, Kubát J, Galloway RK, Brown JC (2003) On multicomponent effects in stellar winds of stars at extremely low metallicity. A&A 402: 713–718

    ADS  Google Scholar 

  • Krtička J, Puls J, Kubat J (2008) The influence of clumping on predicted O star wind parameters. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 111–114

  • Kudritzki RP (2002) Line-driven winds, ionizing fluxes, and ultraviolet spectra of hot stars at extremely low metallicity. I. Very massive O stars. ApJ 577: 389–408

    ADS  Google Scholar 

  • Kudritzki RP, Puls J (2000) Winds from Hot Stars. ARA&A 38: 613–666

    ADS  Google Scholar 

  • Kudritzki RP, The GSMT Science Working Group (2003) GSMT Science Working Group Report. http://www.aura-nio.noao.edu

  • Kudritzki RP, Pauldrach A, Puls J (1987) Radiation driven winds of hot luminous stars. II—Wind models for O-stars in the Magellanic Clouds. A&A 173: 293–298

    ADS  Google Scholar 

  • Kudritzki RP, Pauldrach A, Puls J, Abbott DC (1989) Radiation-driven winds of hot stars. VI—Analytical solutions for wind models including the finite cone angle effect. A&A 219: 205–218

    ADS  Google Scholar 

  • Kudritzki RP, Puls J, Gabler R, Schmitt JHMM (1991) Hot Stars—What can be learnt from Extreme Ultraviolet Spectroscopy. In: Malina RF, Bowyer S (eds) Extreme Ultraviolet Astronomy, p 130

  • Kudritzki RP, Hummer DG, Pauldrach AWA, Puls J, Najarro F, Imhoff J (1992) Radiation-driven winds of hot luminous stars. X—The determination of stellar masses, radii and distances from terminal velocities and mass-loss rates. A&A 257: 655–662

    ADS  Google Scholar 

  • Kudritzki RP, Lennon DJ, Puls J (1995) Quantitative spectroscopy of luminous blue stars in distant galaxies. In: Walsh JR, Danziger IJ (eds) Science with the VLT, p 246

  • Kudritzki RP, Palsa R, Feldmeier A, Puls J, Pauldrach AWA (1996) The X-ray emission from O stars. In: Zimmermann HU, Trümper J, Yorke H (eds) Roentgenstrahlung from the Universe, pp 9–12

  • Kudritzki RP, Mendez RH, Puls J, McCarthy JK (1997) Winds in the atmospheres of central stars of Planetary Nebulae (Invited Review). In: Habing HJ, Lamers HJGLM (eds) Planetary Nebulae, IAU Symposium, vol 180, p 64

  • Kudritzki RP, Puls J, Lennon DJ, Venn KA, Reetz J, Najarro F, McCarthy JK, Herrero A (1999) The wind momentum-luminosity relationship of Galactic A- and B-supergiants. A&A 350: 970–984

    ADS  Google Scholar 

  • Kudritzki RP, Bresolin F, Przybilla N (2003) A new extragalactic distance determination method using the flux-weighted gravity of late B and early A supergiants. ApJL 582: L83–L86

    ADS  Google Scholar 

  • Kudritzki RP, Urbaneja MA, Puls J (2006) Atmospheres and Winds of PN Central Stars. In: Barlow MJ, Méndez RH (eds) Planetary Nebulae in our Galaxy and Beyond, IAU Symposium, vol 234, pp 119–126

  • Kudritzki RP, Urbaneja MA, Bresolin YF, Przybilla N (2008a) Extragalactic Stellar Astronomy with the Brightest Stars in the Universe. In: Bresolin F, Crowther PA, Puls J (eds) Massive Stars as Cosmic Engines, IAU Symposium, vol 250

  • Kudritzki RP, Urbaneja MA, Bresolin F, Przybilla N, Gieren W, Pietrzynski G (2008b) Quantitative Spectroscopy of 24 A supergiants in the Sculptor galaxy NGC 300: flux weighted gravity luminosity relationship, metallicity and metallicity gradient. ArXiv e-prints 803, 0803.3654

  • Lamers HJG, Pauldrach AWA (1991) The formation of outflowing disks around early-type stars by bi-stable radiation-driven winds. A&A 244: L5–L8

    ADS  Google Scholar 

  • Lamers HJGLM, Leitherer C (1993) What are the mass-loss rates of O stars?. ApJ 412: 771–791

    ADS  Google Scholar 

  • Lamers HJGLM, Morton DC (1976) Mass ejection from the O4f star Zeta Puppis. ApJs 32: 715–736

    ADS  Google Scholar 

  • Lamers HJGLM, Waters LBFM (1984a) The infrared and radio spectrum of early-type stars with mass loss. I—The curve-of-growth method. A&A 136: 37–52

    ADS  Google Scholar 

  • Lamers HJGLM, Waters LBFM (1984b) The infrared and radio spectrum of early type stars with mass loss. III—The effect of coronae, hot blobs and clumping on the IR and radio spectrum. A&A 138: 25–35

    ADS  Google Scholar 

  • Lamers HJGLM, Gathier R, Snow TP Jr (1982) Narrow components in the profiles of ultraviolet resonance lines—evidence for a two-component stellar wind for O and B stars. ApJ 258: 186–200

    ADS  Google Scholar 

  • Lamers HJGLM, Waters LBFM, Wesselius PR (1984) The IRAS infrared spectrum of Zeta Puppis (O4If). A&A 134: L17–L20

    ADS  Google Scholar 

  • Lamers HJGLM, Cerruti-Sola M, Perinotto M (1987) The ‘SEI’ method for accurate and efficient calculations of line profiles in spherically symmetric stellar winds. ApJ 314: 726–738

    ADS  Google Scholar 

  • Lamers HJGLM, Snow TP, Lindholm DM (1995) Terminal velocities and the bistability of stellar winds. ApJ 455: 269

    ADS  Google Scholar 

  • Lamers HJGLM, Zickgraf FJ, de Winter D, Houziaux L, Zorec J (1998) An improved classification of B[e]-type stars. A&A 340: 117–128

    ADS  Google Scholar 

  • Lamers HJGLM, Vink JS, de Koter A, Cassinelli JP (1999) Disks formed by Rotation Induced Bi-Stability. In: Wolf B, Stahl O, Fullerton AW (eds) IAU Colloq. 169: Variable and Non-spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, vol 523. Springer, Berlin, p 159

  • Langer N (1997) The Eddington Limit in Rotating Massive Stars. In: Nota A, Lamers H (eds) Luminous Blue Variables: Massive Stars in Transition, Astronomical Society of the Pacific Conference Series, vol 120, p 83

  • Langer N (1998) Coupled mass and angular momentum loss of massive main sequence stars. A&A 329: 551–558

    ADS  Google Scholar 

  • Langer N, Hamann WR, Lennon M, Najarro F, Pauldrach AWA, Puls J (1994) Towards an understanding of very massive stars. A new evolutionary scenario relating O stars, LBVs and Wolf–Rayet stars. A&A 290: 819–833

    ADS  Google Scholar 

  • Langer N, Heger A, Fliegner J (1997) Rotation: a fundamental parameter of massive stars. In: Bedding TR, Booth AJ, Davis J (eds) IAU Symposium, IAU Symposium, vol 189, pp 343–348

  • Lefever K (2007) Fundamental parameters of B-type stars—Application to a HIPPARCOS sample of B supergiants and a CoRoT sample of B dwarfs. Ph.D. thesis, Catholic University Leuven, Belgium

  • Lefever K, Puls J, Aerts C (2007) Statistical properties of a sample of periodically variable B-type supergiants. Evidence for opacity-driven gravity-mode oscillations. A&A 463: 1093–1109

    ADS  Google Scholar 

  • Leitherer C (1988) H-alpha as a tracer of mass loss from OB stars. ApJ 326: 356–367

    ADS  Google Scholar 

  • Leitherer C, Schmutz W, Abbott DC, Hamann WR, Wessolowski U (1989) Atmospheric models for luminous blue variables. ApJ 346: 919–931

    ADS  Google Scholar 

  • Lenorzer A, Mokiem MR, de Koter A, Puls J (2004) Modeling the near-infrared lines of O-type stars. A&A 422: 275–288

    ADS  Google Scholar 

  • Lepine S, Moffat AFJ (1999) Wind Inhomogeneities in Wolf–Rayet Stars. II. Investigation of Emission-Line Profile Variations. ApJ 514: 909–931

    ADS  Google Scholar 

  • Lepine S, Moffat AFJ (2008) Direct spectroscopic observations of clumping in O-star winds. ArXiv e-prints 805, 0805.1864

  • Leutenegger MA, Paerels FBS, Kahn SM, Cohen DH (2006) Measurements and analysis of helium-like triplet ratios in the X-ray spectra of O-type stars. ApJ 650: 1096–1110

    ADS  Google Scholar 

  • Leutenegger MA, Owocki SP, Kahn SM, Paerels FBS (2007) Evidence for the importance of resonance scattering in X-ray emission line profiles of the O star ζ Puppis. ApJ 659: 642–649

    ADS  Google Scholar 

  • Litvinenko YE (2003) Particle acceleration by magnetic reconnection. In: Klein L (ed) Energy conversion and particle acceleration in the solar corona. Lecture Notes in Physics, vol 612. Springer, Berlin, pp 213–229

  • Lobel A, Blomme R (2008) Modeling ultraviolet wind line variability in massive hot stars. ApJ 678: 408–430

    ADS  Google Scholar 

  • Lucy LB (1982) The formation of resonance lines in locally nonmonotonic winds. ApJ 255: 278–285

    ADS  Google Scholar 

  • Lucy LB (1983) The formation of resonance lines in locally nonmonotonic winds. II—an amplitude diagnostic. ApJ 274: 372–379

    ADS  Google Scholar 

  • Lucy LB (1984) Wave amplification in line-driven winds. ApJ 284: 351–356

    ADS  Google Scholar 

  • Lucy LB (1998) Thirty years of radiation-driven hot star winds. In: Kaper L, Fullerton AW (eds) Cyclical variability in stellar winds, p 16

  • Lucy LB (2001) An iterative technique for solving equations of statistical equilibrium. MNRAS 326: 95–101

    ADS  Google Scholar 

  • Lucy LB (2007a) Mass fluxes for O stars. A&A 468: 649–655

    ADS  Google Scholar 

  • Lucy LB (2007b) The structure of line-driven winds. A&A 474: 701–706

    MATH  ADS  Google Scholar 

  • Lucy LB, Abbott DC (1993) Multiline transfer and the dynamics of Wolf–Rayet winds. ApJ 405: 738–746

    ADS  Google Scholar 

  • Lucy LB, Solomon PM (1970) Mass Loss by Hot Stars. ApJ 159: 879–893

    ADS  Google Scholar 

  • Lucy LB, White RL (1980) X-ray emission from the winds of hot stars. ApJ 241: 300–305

    ADS  Google Scholar 

  • Lupie O, Nordsieck K (1987) Visible and infrared continuum spectropolarimetric observations of ten OB supergiant and O emission-line stars. Astron Nachr 93: 214–230

    Google Scholar 

  • MacDonald J, Mullan DJ (2004) Magnetic fields in massive stars: dynamics and origin. MNRAS 348: 702–716

    ADS  Google Scholar 

  • Macfarlane JJ, Cassinelli JP, Welsh BY, Vedder PW, Vallerga JV, Waldron WL (1991) Predicted extreme-ultraviolet line emission for nearby main-sequence B stars. ApJ 380: 564–574

    ADS  Google Scholar 

  • Macfarlane JJ, Waldron WL, Corcoran MF, Wolff MJ, Wang P, Cassinelli JP (1993) Effects of coronal and shock-produced X-rays on the ionization distribution in hot star winds. ApJ 419: 813

    ADS  Google Scholar 

  • MacGregor KB, Hartmann L, Raymond JC (1979) Radiative amplification of sound waves in the winds of O and B stars. ApJ 231: 514–523

    ADS  Google Scholar 

  • Madura TI, Owocki SP, Feldmeier A (2007) A nozzle analysis of slow-acceleration solutions in one-dimensional models of rotating hot-star winds. ApJ 660: 687–698

    ADS  Google Scholar 

  • Maeder A (1999) Stellar evolution with rotation IV: von Zeipel’s theorem and anisotropic losses of mass and angular momentum. A&A 347: 185–193

    ADS  Google Scholar 

  • Maeder A, Eenens P (eds) (2004) Stellar Rotation, IAU Symposium, vol 215

  • Maeder A, Meynet G (2000a) Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. A&A 361: 159–166

    ADS  Google Scholar 

  • Maeder A, Meynet G (2000b) The evolution of rotating stars. ARA&A 38: 143–190

    ADS  Google Scholar 

  • Maeder A, Meynet G (2003a) Stellar evolution with rotation and magnetic fields. I. The relative importance of rotational and magnetic effects. A&A 411: 543–552

    ADS  Google Scholar 

  • Maeder A, Meynet G (2003b) The role of rotation and mass loss in the evolution of massive stars. In: van der Hucht K, Herrero A, Esteban C (eds) A massive star odyssey: from main sequence to supernova, IAU Symposium, vol 212, p 267

  • Maeder A, Meynet G (2004) Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler–Spruit dynamo. A&A 422: 225–237

    ADS  Google Scholar 

  • Maeder A, Meynet G (2005) Stellar evolution with rotation and magnetic fields. III. The interplay of circulation and dynamo. A&A 440: 1041–1049

    ADS  Google Scholar 

  • Maoz D (2008) On the fraction of intermediate-mass close binaries that explode as Type Ia supernovae. MNRAS 384: 267–277

    ADS  Google Scholar 

  • Markova N (1986) The ejection of shells in the stellar wind of P CYG—The most plausible explanation of the Balmer-line radial velocity variations. A&A 162: L3–L5

    ADS  Google Scholar 

  • Markova N, Puls J (2008) Bright OB stars in the Galaxy. IV. Stellar and wind parameters of early to late B supergiants. A&A 478: 823–842

    ADS  Google Scholar 

  • Markova N, Puls J, Repolust T, Markov H (2004) Bright OB stars in the Galaxy. I. Mass-loss and wind-momentum rates of O-type stars: A pure Hα analysis accounting for line-blanketing. A&A 413: 693–709

    ADS  Google Scholar 

  • Markova N, Puls J, Scuderi S, Markov H (2005) Bright OB stars in the Galaxy. II. Wind variability in O supergiants as traced by Hα. A&A 440: 1133–1151

    ADS  Google Scholar 

  • Martins F, Schaerer D, Hillier DJ (2002) On the effective temperature scale of O stars. A&A 382: 999–1004

    ADS  Google Scholar 

  • Martins F, Schaerer D, Hillier DJ, Heydari-Malayeri M (2004) Puzzling wind properties of young massive stars in SMC-N81. A&A 420: 1087–1106

    ADS  Google Scholar 

  • Martins F, Schaerer D, Hillier DJ (2005a) A new calibration of stellar parameters of Galactic O stars. A&A 436: 1049–1065

    ADS  Google Scholar 

  • Martins F, Schaerer D, Hillier DJ, Meynadier F, Heydari-Malayeri M, Walborn NR (2005b) O stars with weak winds: the Galactic case. A&A 441: 735–762

    ADS  Google Scholar 

  • Martins F, Genzel R, Hillier DJ, Eisenhauer F, Paumard T, Gillessen S, Ott T, Trippe S (2007) Stellar and wind properties of massive stars in the central parsec of the Galaxy. A&A 468: 233–254

    ADS  Google Scholar 

  • Massa D, Fullerton AW, Nichols JS, Owocki SP, Prinja RK, 28 co-authors (1995) The IUE MEGA campaign: wind variability and rotation in early-type stars. ApJL 452: L53

  • Massey P, Bresolin F, Kudritzki RP, Puls J, Pauldrach AWA (2004) The physical properties and effective temperature scale of O-type stars as a function of metallicity. I. A sample of 20 stars in the Magellanic Clouds. ApJ 608: 1001–1027

    ADS  Google Scholar 

  • Massey P, Puls J, Pauldrach AWA, Bresolin F, Kudritzki RP, Simon T (2005) The physical properties and effective temperature scale of O-type stars as a function of metallicity. II. Analysis of 20 more Magellanic Cloud stars and results from the complete sample. ApJ 627: 477–519

    ADS  Google Scholar 

  • McErlean ND, Lennon DJ, Dufton PL (1999) Galactic B-supergiants: a non-LTE model atmosphere analysis to estimate atmospheric parameters and chemical compositions. A&A 349: 553–572

    ADS  Google Scholar 

  • Meynet G, Maeder A (2000) Stellar evolution with rotation. V. Changes in all the outputs of massive star models. A&A 361: 101–120

    ADS  Google Scholar 

  • Meynet G, Maeder A, Schaller G, Schaerer D, Charbonnel C (1994) Grids of massive stars with high mass loss rates. V. From 12 to 120 Msun at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. A&As 103: 97–105

    ADS  Google Scholar 

  • Meynet G, Ekström S, Maeder A (2006) The early star generations: the dominant effect of rotation on the CNO yields. A&A 447: 623–639

    ADS  Google Scholar 

  • Milne EA (1926) On the possibility of the emission of high-speed atoms from the sun and stars. MNRAS 86: 459–473

    ADS  Google Scholar 

  • Moffat AFJ, Drissen L, Lamontagne R, Robert C (1988) Spectroscopic evidence for rapid blob ejection in Wolf–Rayet stars. ApJ 334: 1038–1043

    ADS  Google Scholar 

  • Moffat AFJ, Marchenko SV, Zhilyaev BE, Rowe JF, Muntean V, Chené AN, Matthews JM, Kuschnig R, Guenther DB, Rucinski SM, Sasselov D, Walker GAH, Weiss WW (2008) MOST Finds No Coherent Oscillations in the Hot Carbon-rich Wolf–Rayet Star HD 165763 (WR 111). ApJL 679: L45–L48

    ADS  Google Scholar 

  • Mokiem MR, de Koter A, Puls J, Herrero A, Najarro F, Villamariz MR (2005) Spectral analysis of early-type stars using a genetic algorithm based fitting method. A&A 441: 711–733

    ADS  Google Scholar 

  • Mokiem MR, de Koter A, Evans CJ, Puls J, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR, Yoon SC (2006) The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC. A&A 456: 1131–1151

    ADS  Google Scholar 

  • Mokiem MR, de Koter A, Evans CJ, Puls J, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR, Vink JS (2007a) The VLT-FLAMES survey of massive stars: wind properties and evolution of hot massive stars in the Large Magellanic Cloud. A&A 465: 1003–1019

    ADS  Google Scholar 

  • Mokiem MR, de Koter A, Vink JS, Puls J, Evans CJ, Smartt SJ, Crowther PA, Herrero A, Langer N, Lennon DJ, Najarro F, Villamariz MR (2007b) The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. A&A 473: 603–614

    ADS  Google Scholar 

  • Monnier JD, Zhao M, Pedretti E, Thureau N, Ireland M, Muirhead P, Berger JP, Millan-Gabet R, Van Belle G, ten Brummelaar T, McAlister H, Ridgway S, Turner N, Sturmann L, Sturmann J, Berger D (2007) Imaging the surface of Altair. Science 317: 342–345

    ADS  Google Scholar 

  • Morel T, Butler K, Aerts C, Neiner C, Briquet M (2006) Abundance analysis of prime B-type targets for asteroseismology. I. Nitrogen excess in slowly-rotating β Cephei stars. A&A 457: 651–663

    ADS  Google Scholar 

  • Morton DC, Underhill AB (1977) The ultraviolet spectrum of Zeta Puppis. ApJs 33: 83–99

    ADS  Google Scholar 

  • Moss D (2001) Magnetic Fields in the Ap and Bp Stars: a Theoretical Overview. In: Mathys G, Solanki SK, Wickramasinghe DT (eds) Magnetic Fields Across the Hertzsprung–Russell Diagram, Astronomical Society of the Pacific Conference Series, vol 248, p 305

  • Mullan DJ (1984) Corotating interaction regions in stellar winds. ApJ 283: 303–312

    ADS  Google Scholar 

  • Mullan DJ (1986) Displaced narrow absorption components in the spectra of mass-losing OB stars—Indications of corotating interaction regions?. A&A 165: 157–162

    ADS  Google Scholar 

  • Mullan DJ, MacDonald J (2005) Dynamo-generated magnetic fields at the surface of a massive star. MNRAS 356: 1139–1148

    ADS  Google Scholar 

  • Najarro F (2001) Spectroscopy of P Cygni. In: de Groot M, Sterken C (eds) P Cygni 2000: 400 Years of Progress, Astronomical Society of the Pacific Conference Series, vol 233, p 133

  • Najarro F (2006) Metallicity in the GC. J Phys Conf Ser 54: 224–232

    ADS  Google Scholar 

  • Najarro F (2008) Metallicity studies in the IR: Unveiling Obscured Clusters of our Galaxy. In: Bresolin F, Crowther PA, Puls J (eds) Massive Stars as Cosmic Engines, IAU Symposium, vol 250

  • Najarro F, Hillier D (2008) The wind of Eta Carinae and other LBVs. In: Humphreys R, Davidson K (eds) Eta Carinae

  • Najarro F, Hillier DJ, Stahl O (1997a) A spectroscopic investigation of P Cygni. I. H and HeI lines. A&A 326: 1117–1134

    ADS  Google Scholar 

  • Najarro F, Krabbe A, Genzel R, Lutz D, Kudritzki RP, Hillier DJ (1997b) Quantitative spectroscopy of the HeI cluster in the Galactic center. A&A 325: 700–708

    ADS  Google Scholar 

  • Najarro F, Kudritzki RP, Hillier DJ, Lamers HJGLM, Voors RHM, Morris PW, Waters LBFM (1998) Ionized outflows of hot stars. Ap&SS 255: 137–144

    ADS  Google Scholar 

  • Najarro F, Figer DF, Hillier DJ, Kudritzki RP (2004) Metallicity in the Galactic Center: the Arches cluster. ApJL 611: L105–L108

    ADS  Google Scholar 

  • Najarro F, Puls J, Herrero A, Hanson MM, Martin-Pintado J, Hillier DJ (2008) Tracking the Clumping in OB Stars from UV to radio. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in Hot-Star Winds, pp 43–46

  • Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf–Rayet stars as a function of stellar parameters. A&A 360: 227–244

    ADS  Google Scholar 

  • Nugis T, Lamers HJGLM (2002) The mass-loss rates of Wolf–Rayet stars explained by optically thick radiation driven wind models. A&A 389: 162–179

    ADS  Google Scholar 

  • Nugis T, Crowther P, Willis A (1998) Clumping-corrected mass-loss rates of Wolf–Rayet stars. A&A 333: 956–969

    ADS  Google Scholar 

  • Oskinova L, Ignace R, Hamann WR, Pollock A, Brown J (2003) The conspicuous absence of X-ray emission from carbon-enriched Wolf–Rayet stars. A&A 402: 755–765

    ADS  Google Scholar 

  • Oskinova LM, Feldmeier A, Hamann WR (2004) X-ray emission lines from inhomogeneous stellar winds. A&A 422: 675–691

    MATH  ADS  Google Scholar 

  • Oskinova LM, Feldmeier A, Hamann WR (2006) High-resolution X-ray spectroscopy of bright O-type stars. MNRAS 372: 313–326

    ADS  Google Scholar 

  • Oskinova LM, Hamann WR, Feldmeier A (2007) Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates. A&A 476: 1331–1340

    ADS  Google Scholar 

  • Oskinova LM, Hamann WR, Feldmeier A (2008) X-raying clumped stellar winds. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in Hot-Star Winds, pp 203–208

  • Osterbrock D, Flather E (1959) Electron Densities in the Orion NEBULA.II. ApJ 129: 26

    ADS  Google Scholar 

  • Owocki S, Townsend R, ud-Doula A (2005) Magnetic Channeling of Radiatively Driven Hot-Star Winds. In: de Gouveia dal Pino EM, Lugones G, Lazarian A (eds) Magnetic Fields in the Universe: from Laboratory and Stars to Primordial Structures. American Institute of Physics Conference Series, vol 784, pp 239–252

  • Owocki SP (1994a) The Basic Physics of Hot-Star Winds. In: Balona LA, Henrichs HF, Le Contel JM (eds) Pulsation; rotation; and mass loss in early-type stars, IAU Symposium, vol 162, p 475

  • Owocki SP (1994b) Theory review: line-driven instability and other causes of structure and variability in hot-star winds. Ap&SS 221: 3–23

    ADS  Google Scholar 

  • Owocki SP (1994c) Theory review: line-driven instability and other causes of structure and variability in hot-star winds. Ap&SS 221: 3–23

    ADS  Google Scholar 

  • Owocki SP (2008) Dynamical simulation of the velocity-porosity reduction in observed strength of stellar wind lines. In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 121–124

  • Owocki SP, Cohen DH (1999) A simple scaling analysis of X-ray emission and absorption in hot-star winds. ApJ 520: 833–840

    ADS  Google Scholar 

  • Owocki SP, Cohen DH (2001) X-ray line profiles from parameterized emission within an accelerating stellar wind. ApJ 559: 1108–1116

    ADS  Google Scholar 

  • Owocki SP, Cohen DH (2006) The effect of porosity on X-ray emission-line profiles from hot-star winds. ApJ 648: 565–571

    ADS  Google Scholar 

  • Owocki SP, Puls J (1996) Nonlocal escape-integral approximations for the line force in structured line-driven stellar winds. ApJ 462: 894

    ADS  Google Scholar 

  • Owocki SP, Puls J (1999) Line-driven stellar winds: the dynamical role of diffuse radiation gradients and limitations to the sobolev approach. ApJ 510: 355–368

    ADS  Google Scholar 

  • Owocki SP, Puls J (2002) Ion runaway instability in low-density, line-driven stellar winds. ApJ 568: 965–978

    ADS  Google Scholar 

  • Owocki SP, Rybicki GB (1984) Instabilities in line-driven stellar winds. I—Dependence on perturbation wavelength. ApJ 284: 337–350

    ADS  Google Scholar 

  • Owocki SP, Rybicki GB (1985) Instabilities in line-driven stellar winds. II—Effect of scattering. ApJ 299: 265–276

    ADS  Google Scholar 

  • Owocki SP, ud-Doula A (2004) The effect of magnetic field tilt and divergence on the mass flux and flow speed in a line-driven stellar wind. ApJ 600: 1004–1015

    ADS  Google Scholar 

  • Owocki SP, Castor JI, Rybicki GB (1988) Time-dependent models of radiatively driven stellar winds. I—Nonlinear evolution of instabilities for a pure absorption model. ApJ 335: 914–930

    ADS  Google Scholar 

  • Owocki SP, Cranmer SR, Blondin JM (1994) Two-dimensional hydrodynamical simulations of wind-compressed disks around rapidly rotating B stars. ApJ 424: 887–904

    ADS  Google Scholar 

  • Owocki SP, Cranmer SR, Fullerton AW (1995) Periodic variations in ultraviolet spectral lines of the B0.5 Ib Star HD 64760: evidence for corotating wind streams rooted in surface variations. ApJL 453: L37

    ADS  Google Scholar 

  • Owocki SP, Cranmer SR, Gayley KG (1996) Inhibition FO wind compressed disk formation by nonradial line-forces in rotating hot-star winds. ApJL 472: L115

    ADS  Google Scholar 

  • Owocki SP, Cranmer SR, Gayley KG (1998a) Latitudinal dependence of radiatively driven mass loss from rapidly rotating hot-stars. In: Hubert AM, Jaschek C (eds) B[e] stars, astrophysics and space science library, vol 233, p 205

  • Owocki SP, Gayley KG, Cranmer SR (1998b) Effects of gravity darkening on radiatively driven mass loss from rapidly rotating stars. In: Howarth I (ed) Properties of hot luminous stars, astronomical society of the pacific conference series, vol 131, p 237

  • Owocki SP, Gayley KG, Shaviv NJ (2004) A porosity-length formalism for photon-tiring-limited mass loss from stars above the Eddington limit. ApJ 616: 525–541

    ADS  Google Scholar 

  • Panagia N, Felli M (1975) The spectrum of the free-free radiation from extended envelopes. A&A 39: 1–5

    ADS  Google Scholar 

  • Pauldrach A (1987) Radiation driven winds of hot luminous stars. III—Detailed statistical equilibrium calculations for hydrogen to zinc. A&A 183: 295–313

    ADS  Google Scholar 

  • Pauldrach AWA (2005) Radiation driven atmospheres of O-type stars—Synthetic UV-spectra of consistent atmospheric models as a spectroscopic tool. In: Szczerba R, Stasińska G, Gorny SK (eds) Planetary Nebulae as Astronomical Tools, American Institute of Physics Conference Series, vol 804, pp 105–116

  • Pauldrach AWA, Puls J (1990) Radiation-driven winds of hot stars. VIII—The bistable wind of the luminous blue variable P Cygni (B1 Ia/+/). A&A 237: 409–424

    ADS  Google Scholar 

  • Pauldrach A, Puls J, Kudritzki RP (1986) Radiation-driven winds of hot luminous stars—Improvements of the theory and first results. A&A 164: 86–100

    MATH  ADS  Google Scholar 

  • Pauldrach A, Puls J, Kudritzki RP, Mendéz RH, Heap SR (1988) Radiation-driven winds of hot stars. V—Wind models for Central Stars of Planetary Nebulae. A&A 207:123–131

    Google Scholar 

  • Pauldrach AWA, Kudritzki RP, Puls J, Butler K (1990) Radiation driven winds of hot luminous stars. VII—The evolution of massive stars and the morphology of stellar wind spectra. A&A 228: 125–154

    ADS  Google Scholar 

  • Pauldrach AWA, Kudritzki RP, Puls J, Butler K, Hunsinger J (1994) Radiation-driven winds of hot luminous stars. 12: A first step towards detailed UV-line diagnostics of O-stars. A&A 283: 525–560

    ADS  Google Scholar 

  • Pauldrach AWA, Lennon M, Hoffmann TL, Sellmaier F, Kudritzki RP, Puls J (1998) Realistic Models for Expanding Atmospheres. In: Howarth I (ed) Properties of Hot Luminous Stars, Astronomical Society of the Pacific Conference Series, vol 131, p 258

  • Pauldrach AWA, Hoffmann TL, Lennon M (2001) Radiation-driven winds of hot luminous stars. XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres. A&A 375: 161–195

    ADS  Google Scholar 

  • Pauldrach AWA, Hoffmann TL, Méndez RH (2004) Radiation-driven winds of hot luminous stars. XV. Constraints on the mass-luminosity relation of central stars of planetary nebulae. A&A 419: 1111–1122

    ADS  Google Scholar 

  • Pellerin A, Fullerton AW, Robert C, Howk JC, Hutchings JB, Walborn NR, Bianchi L, Crowther PA, Sonneborn G (2002) An atlas of Galactic OB spectra observed with the far ultraviolet spectroscopic explorer. ApJs 143: 159–200

    ADS  Google Scholar 

  • Pelupessy F, Lamers H, Vink J (2000) The radiation driven winds of rotating B[e] supergiants. A&A 359: 695–706

    ADS  Google Scholar 

  • Petit V, Wade GA, Drissen L, Montmerle T, Alecian E (2008) Discovery of two magnetic massive stars in the Orion Nebula Cluster: a clue to the origin of neutron star magnetic fields?. MNRAS 387: L23–L27

    ADS  Google Scholar 

  • Petrenz P (1999) Self-consistent models of radiation driven winds of hot stars with rotation (in German). Ph.D. thesis, Ludwig-Maximilians-Universität München

  • Petrenz P, Puls J (1996) Hα line formation in hot star winds: the influence of rotation. A&A 312: 195–220

    ADS  Google Scholar 

  • Petrenz P, Puls J (2000) 2-D non-LTE models of radiation driven winds from rotating early-type stars. I. Winds with an optically thin continuum. A&A 358: 956–992

    ADS  Google Scholar 

  • Pittard JM, Dougherty SM, Coker RF, O’Connor E, Bolingbroke NJ (2006) Radio emission models of colliding-wind binary systems. Inclusion of IC cooling. A&A 446: 1001–1019

    ADS  Google Scholar 

  • Poe CH, Owocki SP, Castor JI (1990) The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model. ApJ 358: 199–213

    ADS  Google Scholar 

  • Pollock AMT (1989) Speculation of the origin of X-ray emission in early-type stars. In: Reconnection in Space Plasma, pp 309–311

  • Prinja RK (1988) Evidence for rotationally modulated variability in O star winds. MNRAS 231: 21P–24P

    ADS  Google Scholar 

  • Prinja BK (1992) UV P Cygni Profile Variability in 0 Stars (Invited Paper). In: Drissen L, Leitherer C, Nota A (eds) Nonisotropic and Variable Outflows from Stars, Astronomical Society of the Pacific Conference Series, vol 22, p 167

  • Prinja RK (1994) Time-Dependent Phenomena in OB Star Winds. In: Balona LA, Henrichs HF, Le Contel JM (eds) Pulsation; rotation; and mass loss in early-type stars, IAU Symposium, vol 162, p 507

  • Prinja RK, Smith LJ (1992) Migrating optical depth enhancements in the UV wind lines of the Wolf–Rayet star HD 93131. A&A 266: 377–384

    ADS  Google Scholar 

  • Prinja RK, Barlow MJ, Howarth ID (1990) Terminal velocities for a large sample of O stars, B supergiants, and Wolf–Rayet stars. ApJ 361: 607–620

    ADS  Google Scholar 

  • Prinja RK, Balona LA, Bolton CT, Crowe RA, Fieldus MS, Fullerton AW, Gies DR, Howarth ID, McDavid D, Reid AHN (1992) Time series observations of O stars. I—IUE observations of variability in the stellar wind of Zeta Puppis. ApJ 390: 266–272

    ADS  Google Scholar 

  • Prinja RK, Massa D, Fullerton AW (1995) The IUE MEGA campaign: modulated structure in the wind of HD 64760 (B0.5 Ib). ApJL 452: L61

    ADS  Google Scholar 

  • Przybilla N, Butler K, Becker SR, Kudritzki RP (2006) Quantitative spectroscopy of BA-type supergiants. A&A 445: 1099–1126

    ADS  Google Scholar 

  • Puls J (1987) Radiation-driven winds of hot luminous stars. IV—The influence of multi-line effects. A&A 184: 227–248

    ADS  Google Scholar 

  • Puls J (2008) Physical and Wind Properties of OB-Stars. In: Bresolin F, Crowther PA, Puls J (eds) Massive stars as cosmic engines, IAU Symposium, vol 250

  • Puls J, Owocki SP, Fullerton AW (1993a) On the synthesis of resonance lines in dynamical models of structured hot-star winds. A&A 279: 457–476

    ADS  Google Scholar 

  • Puls J, Pauldrach AWA, Kudritzki RP, Owocki SP, Najarro F (1993b) Radiation Driven Winds of Hot Stars—some Remarks on Stationary Models and Spectrum Synthesis in Time-Dependent Simulations. (Ludwig Biermann Award Lecture 1992). In: Klare G (ed) Reviews in modern astronomy, reviews in modern astronomy, vol 6, pp 271–300

  • Puls J, Kudritzki RP, Herrero A, Pauldrach AWA, Haser SM, Lennon DJ, Gabler R, Voels SA, Vilchez JM, Wachter S, Feldmeier A (1996) O-star mass-loss and wind momentum rates in the Galaxy and the Magellanic Clouds Observations and theoretical predictions. A&A 305: 171

    ADS  Google Scholar 

  • Puls J, Kudritzki RP, Santolaya-Rey AE, Herrero A, Owocki SP, McCarthy JK (1998) Spectral Diagnostics of Blue Stars with Winds. In: Howarth I (ed) Properties of Hot Luminous Stars, Astronomical Society of the Pacific Conference Series, vol 131, p 245

  • Puls J, Petrenz P, Owocki SP (1999) Non-spherical Radiation-Driven Wind Models. In: Wolf B, Stahl O, Fullerton AW (eds) IAU Colloq. 169: Variable and Non-spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, vol 523. Springer, Berlin, p 131

  • Puls J, Springmann U, Lennon M (2000) Radiation driven winds of hot luminous stars. XIV. Line statistics and radiative driving. A&As 141: 23–64

    ADS  Google Scholar 

  • Puls J, Repolust T, Hoffmann TL, Jokuthy A, Venero ROJ (2003) Advances in radiatively driven wind models. In: van der Hucht K, Herrero A, Esteban C (eds) A Massive Star Odyssey: From Main Sequence to Supernova, IAU Symposium, vol 212, p 61

  • Puls J, Urbaneja MA, Venero R, Repolust T, Springmann U, Jokuthy A, Mokiem MR (2005) Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models. A&A 435: 669–698

    ADS  Google Scholar 

  • Puls J, Markova N, Scuderi S, Stanghellini C, Taranova OG, Burnley AW, Howarth ID (2006) Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Ha, IR and radio analysis. A&A 454: 625–651

    ADS  Google Scholar 

  • Reimer A, Pohl M, Reimer O (2006) Nonthermal high-energy emission from colliding winds of massive stars. ApJ 644: 1118–1144

    ADS  Google Scholar 

  • Repolust T, Puls J, Herrero A (2004) Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing. A&A 415: 349–376

    ADS  Google Scholar 

  • Repolust T, Puls J, Hanson MM, Kudritzki RP, Mokiem MR (2005) Quantitative H and K band spectroscopy of Galactic OB-stars at medium resolution. A&A 440: 261–286

    ADS  Google Scholar 

  • Robert C (1994) Optical spectroscopy of inhomogeneities in the winds of Wolf–Rayet stars. Ap&SS 221: 137–153

    ADS  Google Scholar 

  • Robert C, Moffat A, Bastien P, Drissen L, St-Louis N (1989) Polarization variability among Wolf–Rayet stars. V—Linear polarization of the bright Cygnus stars and an anticorrelation of variability with wind speed. ApJ 347: 1034–1054

    ADS  Google Scholar 

  • Rodrigues C, Magalhaes A (2000) Blobs in Wolf–Rayet winds: random photometric and polarimetric variability. ApJ 540: 412–421

    ADS  Google Scholar 

  • Runacres MC, Owocki SP (2002) The outer evolution of instability-generated structure in radiatively driven stellar winds. A&A 381: 1015–1025

    ADS  Google Scholar 

  • Runacres MC, Owocki SP (2005) A pseudo-planar, periodic-box formalism for modelling the outer evolution of structure in spherically expanding stellar winds. A&A 429: 323–333

    ADS  Google Scholar 

  • Rybicki GB, Owocki SP, Castor JI (1990) Instabilities in line-driven stellar winds. IV—Linear perturbations in three dimensions. ApJ 349: 274–285

    ADS  Google Scholar 

  • Sana H, Rauw G, Naze Y, Gosset E, Vreux JM (2006) An XMM-Newton view of the young open cluster NGC 6231—II. The OB star population. MNRAS 372: 661–678

    ADS  Google Scholar 

  • Santolaya-Rey AE, Puls J, Herrero A (1997) Atmospheric NLTE-models for the spectroscopic analysis of luminous blue stars with winds. A&A 323: 488–512

    ADS  Google Scholar 

  • Schmutz W (1995) Hydrodynamnic line-blanketed atmospheres of Wolf–Rayet stars (Invited). In: van der Hucht KA, Williams PM (eds) Wolf–Rayet stars: binaries; colliding winds; evolution, IAU Symposium, vol 163, p 127

  • Schmutz W (1997) Photon loss from the helium Lyα line—the key to the acceleration of Wolf–Rayet winds. A&A 321: 268–287

    ADS  Google Scholar 

  • Schnerr R (2007) Magnetic fields and mass loss in massive stars. Ph.D. thesis, University of Amsterdam

  • Scuderi S, Bonanno G, di Benedetto R, Spadaro D, Panagia N (1992) H-alpha observations of early-type stars. ApJ 392: 201–208

    ADS  Google Scholar 

  • Semel M (1989) Zeeman-Doppler imaging of active stars. I—Basic principles. A&A 225: 456–466

    ADS  Google Scholar 

  • Shaviv NJ (1998) The Eddington luminosity limit for multiphased media. ApJL 494: L193

    ADS  Google Scholar 

  • Shaviv NJ (2001) The theory of steady-state super-Eddington winds and its application to novae. MNRAS 326: 126–146

    ADS  Google Scholar 

  • Sim S (2004) Mass-loss rates for hot luminous stars: the influence of line branching. MNRAS 349: 899–908

    ADS  Google Scholar 

  • Smith N, Owocki SP (2006) On the role of continuum-driven eruptions in the evolution of very massive stars and population III stars. ApJL 645: L45–L48

    ADS  Google Scholar 

  • Smith LJ, Crowther PA, Prinja RK (1994) A study of the luminous blue variable candidate He 3-519 and its surrounding nebula. A&A 281: 833–854

    ADS  Google Scholar 

  • Smith N, Davidson K, Gull T, Ishibashi K, Hillier D (2003a) Latitude-dependent effects in the stellar wind of eta Carinae. ApJ 586: 432–450

    ADS  Google Scholar 

  • Smith N, Gehrz RD, Hinz PM, Hoffmann WF, Hora JL, Mamajek EE, Meyer MR (2003b) Mass and kinetic energy of the Homunculus nebula around η Carinae. AJ 125: 1458–1466

    ADS  Google Scholar 

  • Smith N, Vink JS, de Koter A (2004) The missing luminous blue variables and the bistability jump. ApJ 615: 475–484

    ADS  Google Scholar 

  • Sobolev VV (1960) Moving envelopes of stars. Harvard University Press, Cambridge

    Google Scholar 

  • Springmann U (1991) Diploma-Thesis. Kinetic effects in hot star winds (in German). Ludwig-Maximilians-Universität München

  • Springmann U (1994) Multiple resonance line scattering and the ’momentum problem’ in Wolf–Rayet star winds. A&A 289: 505–523

    ADS  Google Scholar 

  • Springmann U, Puls J (1998) Models of Radiatively Driven Wolf–Rayet-Star Winds. In: Howarth I (ed) Properties of Hot Luminous Stars, Astronomical Society of the Pacific Conference Series, vol 131, p 286

  • Springmann UWE, Pauldrach AWA (1992) Radiation-driven winds of hot luminous stars. XI—Frictional heating in a multicomponent stellar wind plasma and decoupling of radiatively accelerated ions. A&A 262: 515–522

    ADS  Google Scholar 

  • Spruit HC (1999) Differential rotation and magnetic fields in stellar interiors. A&A 349: 189–202

    ADS  Google Scholar 

  • Spruit HC (2002) Dynamo action by differential rotation in a stably stratified stellar interior. A&A 381: 923–932

    ADS  Google Scholar 

  • St-Louis N, Moffat AFJ (2008) Do clumping corrections increase with decreasing mass-loss rate? In: Hamann WR, Oskinova LM, Feldmeier A (eds) Clumping in hot-star winds, pp 39–42

  • St-Louis N, Drissen L, Moffat AFJ, Bastien P, Tapia S (1987) Polarization variability among Wolf–Rayet stars. I. Linear polarization of a complete sample of southern Galactic WC stars. ApJ 322: 870–887

    ADS  Google Scholar 

  • St-Louis N, Moffat A, Lapointe L, Efimov Y, Shakhovskoj N, Fox G, Piirola V (1993) Polarization eclipse model of the Wolf–Rayet binary V444 Cygni with constraints on the stellar radii and an estimate of the Wolf–Rayet mass-loss rate. ApJ 410: 342–356

    ADS  Google Scholar 

  • Stahl O, Wolf B, Aab O, Smolinski J (1991) Stellar wind properties of A-type hypergiants. A&A 252: 693–700

    ADS  Google Scholar 

  • Stahl O, Jankovics I, Kovacs J, Wolf B, Schmutz W, Kaufer A, Rivinius T, Szeifert T (2001) Long-term spectroscopic monitoring of the Luminous Blue Variable AG Carinae. A&A 375: 54–69

    ADS  Google Scholar 

  • Stevens IR (1995) Thermal radio emission from early-type binary systems. MNRAS 277: 163–172

    ADS  Google Scholar 

  • Taresch G, Kudritzki RP, Hurwitz M, Bowyer S, Pauldrach AWA, Puls J, Butler K, Lennon DJ, Haser SM (1997) Quantitative analysis of the FUV, UV and optical spectrum of the O3 star HD 93129A. A&A 321: 531–548

    ADS  Google Scholar 

  • Taylor M, Nordsieck KH, Schulte-Ladbeck RE, Bjorkman KS (1991) A study of the asymmetric wind of P Cygni. AJ 102: 1197–1206

    ADS  Google Scholar 

  • Townsend RHD, Owocki SP (2005) A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars. MNRAS 357: 251–264

    ADS  Google Scholar 

  • Townsend RHD, Owocki SP, Groote D (2005) The rigidly rotating magnetosphere of σ Orionis E. ApJL 630: L81–L84

    ADS  Google Scholar 

  • Townsend RHD, Owocki SP, ud-Doula A (2007) A rigid-field hydrodynamics approach to modelling the magnetospheres of massive stars. MNRAS 382: 139–157

    ADS  Google Scholar 

  • Trundle C, Lennon D (2005) Understanding B-type supergiants in the low metallicity environment of the SMC II. A&A 434: 677–689

    ADS  Google Scholar 

  • Trundle C, Dufton PL, Hunter I, Evans CJ, Lennon DJ, Smartt SJ, Ryans RSI (2007) The VLT-FLAMES survey of massive stars: evolution of surface N abundances and effective temperature scales in the Galaxy and Magellanic Clouds. A&A 471: 625–643

    ADS  Google Scholar 

  • Trundle C, Kotak R, Vink JS, Meikle WPS (2008) SN 2005 gj: evidence for LBV supernovae progenitors?. A&A 483: L47–L50

    ADS  Google Scholar 

  • ud-Doula A, Owocki SP (2002) Dynamical simulations of magnetically channeled line-driven stellar winds. I. Isothermal, nonrotating, radially driven flow. ApJ 576: 413–428

    ADS  Google Scholar 

  • ud-Doula A, Townsend RHD, Owocki SP (2006) Centrifugal breakout of magnetically confined line-driven stellar winds. ApJL 640: L191–L194

    ADS  Google Scholar 

  • ud-Doula A, Owocki SP, Townsend RHD (2008) Dynamical simulations of magnetically channelled line-driven stellar winds—II. The effects of field-aligned rotation. MNRAS 385: 97–108

    ADS  Google Scholar 

  • Urbaneja M (2004) B Supergiants in the Milky Way and Nearby Galaxies: Models and Quantitative Spectroscopy. Ph.D. thesis, Universidad de la Laguna, La Laguna, Spain

  • Urbaneja MA, Kudritzki R, Bresolin F, Przybilla N, Gieren W, Pietrzynski G (2008) The Araucaria Project: the Local Group Galaxy WLM–Distance and metallicity from quantitative spectroscopy of blue Supergiants. ArXiv e-prints 805, 0805.3555

  • Vacca WD, Garmany CD, Shull JM (1996) The Lyman-continuum fluxes and stellar parameters of O and early B-type stars. ApJ 460: 914

    ADS  Google Scholar 

  • van Boekel R, Kervella P, Scholler M, Herbst T, Brandner W, de Koter A, Waters LF, Hillier D, Paresce F, Lenzen R, Lagrange AM (2003) Direct measurement of the size and shape of the present-day stellar wind of eta Carinae. A&A 410: L37–L40

    ADS  Google Scholar 

  • Van Loo S (2005) Non-thermal radio emission from single hit stars. Ph.D. thesis, AA (Royal Observatory of Belgium Ringlaan 3 B-1180 Brussels)

  • van Loo S, Runacres MC, Blomme R (2006) Can single O stars produce non-thermal radio emission?. A&A 452: 1011–1019

    ADS  Google Scholar 

  • van Marle AJ, Owocki SP, Shaviv NJ (2008) Continuum-driven winds from super-Eddington stars: a Tale of Two Limits. In: First Stars III, American Institute of Physics Conference Series, vol 990, pp 250–253

  • Verdugo E, Talavera A, Gómez de Castro AI, Henrichs HF (2003) Search for magnetic fields in A-type supergiants. In: van der Hucht K, Herrero A, Esteban C (eds) A Massive Star Odyssey: From Main Sequence to Supernova, IAU Symposium, vol 212, p 255

  • Villamariz M (2001). Ph.D. thesis, Universidad de la Laguna, La Laguna, Spain

  • Vink JS (2006) Massive star feedback—from the first stars to the present. In: Lamers HJGLM, Langer N, Nugis T, Annuk K (eds) ASP Conf. Ser. 353: Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology, p 113

  • Vink JS (2007) Constraining GRB progenitor models by probing Wolf–Rayet wind geometries in the Large Magellanic Cloud. A&A 469: 707–711

    ADS  Google Scholar 

  • Vink JS (2009) Eta Carinae and the Luminous Blue Variables. In: Humphreys R, Davidson K (eds) Eta Carinae and the supernova imposters (in press)

  • Vink JS, Cassisi S (2002) Hot horizontal branch stars: predictions for mass loss. Winds, rotation, and the low gravity problem. A&A 392: 553–562

    ADS  Google Scholar 

  • Vink JS, de Koter A (2002) Predictions of variable mass loss for Luminous Blue Variables. A&A 393: 543–553

    ADS  Google Scholar 

  • Vink JS, de Koter A (2005) On the metallicity dependence of Wolf–Rayet winds. A&A 442: 587–596

    ADS  Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (1999) On the nature of the bi-stability jump in the winds of early-type supergiants. A&A 350: 181–196

    ADS  Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (2000) New theoretical mass-loss rates of O and B stars. A&A 362: 295–309

    ADS  Google Scholar 

  • Vink JS, de Koter A, Lamers HJGLM (2001) Mass-loss predictions for O and B stars as a function of metallicity. A&A 369: 574–588

    ADS  Google Scholar 

  • von Zeipel H (1924) The radiative equilibrium of a rotating system of gaseous masses. MNRAS 84: 665–683

    ADS  Google Scholar 

  • Walborn NR, Fullerton AW, Crowther PA, Bianchi L, Hutchings JB, Pellerin A, Sonneborn G, Willis AJ (2002) Far ultraviolet spectroscopic explorer atlas of OB stars in the Magellanic Clouds. ApJs 141: 443–468

    ADS  Google Scholar 

  • Waldron WL, Cassinelli JP (2007) An extensive collection of stellar wind X-ray source region emission line parameters, temperatures, velocities, and their radial distributions as obtained from Chandra observations of 17 OB stars. ApJ 668: 456–480

    ADS  Google Scholar 

  • Waldron WL, Cassinelli JP (2001) Chandra discovers a very high density X-ray plasma on the O star ζ Orionis. ApJL 548: L45–L48

    ADS  Google Scholar 

  • Waters LBFM, Lamers HJGLM (1984) The infrared and radio spectrum of early type stars with mass loss. II—Tables of theoretical curves of growth for IR and radio excess and gaunt factors. A&As 57: 327–352

    ADS  Google Scholar 

  • Weigelt G, Kraus S, Driebe T, Petrov RG, Hofmann KH, Millour F, Chesneau O, Schertl D, Malbet F, Hillier JD, 93 coauthors (2007) Near-infrared interferometry of η Carinae with spectral resolutions of 1 500 and 12 000 using AMBER/VLTI. A&A 464:87–106

    Google Scholar 

  • Wende S, Glatzel W, Schuh S (2008) Non-linear Pulsations in Wolf–Rayet Stars. In: Werner A, Rauch T (eds) Hydrogen-Deficient Stars, Astronomical Society of the Pacific Conference Series, vol 391, p 319

  • White RL (1985) Synchrotron emission from chaotic stellar winds. ApJ 289: 698–708

    ADS  Google Scholar 

  • White RL, Becker RH (1983) The discovery of a hot stellar wind. ApJL 272: L19–L23

    ADS  Google Scholar 

  • Williams PM, van der Hucht KA, The PS (1987) Infrared photometry of late-type Wolf–Rayet stars. A&A 182: 91–106

    ADS  Google Scholar 

  • Williams PM, van der Hucht KA, Pollock AMT, Florkowski DR, van der Woerd H, Wamsteker WM (1990) Multi-frequency variations of the Wolf–Rayet system HD 193793. I—Infrared, X-ray and radio observations. MNRAS 243: 662–684

    ADS  Google Scholar 

  • Williams PM, Dougherty SM, Davis RJ, van der Hucht KA, Bode MF, Setia Gunawan DYA (1997) Radio and infrared structure of the colliding-wind Wolf–Rayet system WR147. MNRAS 289: 10–20

    ADS  Google Scholar 

  • Wojdowski PS, Schulz NS (2005) Ion-by-Ion differential emission measure determination of collisionally ionized plasma. II. Application to hot stars. ApJ 627: 953–959

    ADS  Google Scholar 

  • Wolf B, Stahl O, Fullerton AW (eds) (1999) Variable and Non-spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, vol 523. Springer, Berlin

  • Woosley SE (1993) Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ 405: 273–277

    ADS  Google Scholar 

  • Wright AE, Barlow MJ (1975) The radio and infrared spectrum of early-type stars undergoing mass loss. MNRAS 170: 41–51

    ADS  Google Scholar 

  • Zahn JP (1992) Circulation and turbulence in rotating stars. A&A 265: 115–132

    ADS  Google Scholar 

  • Zickgraf FJ, Wolf B, Leitherer C, Appenzeller I, Stahl O (1986) B(e)-supergiants of the Magellanic Clouds. A&A 163: 119–134

    ADS  Google Scholar 

  • Zickgraf FJ, Wolf B, Stahl O, Humphreys RM (1989) S 18—a new B(e) supergiant in the Small Magellanic Cloud with evidence for an excretion disk. A&A 220: 206–214

    ADS  Google Scholar 

  • Zsargó J, Hillier DJ, Bouret JC, Lanz T, Leutenegger MA, Cohen DH (2008a) On the importance of the interclump medium for superionization: O VI formation in the wind of ζ Puppis. ApJL 685: L149–L152

    ADS  Google Scholar 

  • Zsargó J, Hillier DJ, Georgiev LN (2008b) Axi-symmetric models of B[e] supergiants. I. The effective temperature and mass-loss dependence of the hydrogen and helium ionization structure. A&A 478: 543–551

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Puls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puls, J., Vink, J.S. & Najarro, F. Mass loss from hot massive stars. Astron Astrophys Rev 16, 209–325 (2008). https://doi.org/10.1007/s00159-008-0015-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-008-0015-8

Keywords

Navigation