Skip to main content
Log in

Multi-fidelity error-estimate-based model management

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a novel multi-fidelity model-management framework based on the estimated error between the low-fidelity and high-fidelity models. The optimization algorithm is similar to classical multi-fidelity trust-region model-management approaches, but it replaces the trust-radius constraint with a bound on the estimated error between the low- and high-fidelity models. This enables globalization without requiring the user to specify non-intuitive parameters such as the initial trust radius, which have a significant impact on the cost of the optimization yet can be hard to determine a priori. We demonstrate the framework on a simple one-dimensional optimization problem, a series of analytical benchmark problems, and a realistic electric-motor optimization. We show that for low-fidelity models that accurately capture the trends of the high-fidelity model, the developed framework can significantly improve the efficiency of obtaining high-fidelity optima compared to state-of-the-art multi-fidelity optimization methods and a direct high-fidelity optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. For all TRMM results, we use the trust-region update parameters \(c_1 = 0.5\), \(c_2 = 2.0\), \(r_1 = 0.1\), \(r_2 = 0.75\), \(\varDelta _0 = 10\), and \(\varDelta _\infty = 10^{3}\varDelta _0\), as recommended by Alexandrov et al. (2001).

  2. Specifically, at each finite-element degree of freedom.

References

  • Alexandrov NM, Dennis JE, Lewis R, Torczon V (1998) A trust-region framework for managing the use of approximation models in optimization. Struct Optim 15(1):16–23

    Article  Google Scholar 

  • Alexandrov NM, Lewis R, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircr 38(6):1093–1101

    Article  Google Scholar 

  • Anderson R, Andrej J, Barker A, Bramwell J, Camier J-S, Cerveny J, Dobrev V, Dudouit Y, Fisher A, Kolev T, Pazner W, Stowell M, Tomov V, Akkerman I, Dahm J, Medina D, Zampini S (2021) MFEM: a modular finite element methods library. Comput Math Appl 81:42–74. https://doi.org/10.1016/j.camwa.2020.06.009

    Article  MathSciNet  Google Scholar 

  • Bryson DE, Rumpfkeil MP (2018) Multifidelity quasi-newton method for design optimization. AIAA J 56(10):4074–4086

    Article  ADS  Google Scholar 

  • Conn Andrew R, Gould Nicholas IM, Toint Philippe L (2000) Trust region methods. SIAM, Philadelphia

    Book  Google Scholar 

  • Coulomb J (1983) A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans Magn 19(6):2514–2519. https://doi.org/10.1109/TMAG.1983.1062812. ISSN 1941-0069.

    Article  ADS  Google Scholar 

  • Coulomb J, Meunier G (1984) Finite element implementation of virtual work principle for magnetic or electric force and torque computation. IEEE Trans Magn 20(5):1894–1896. https://doi.org/10.1109/TMAG.1984.1063232. ISSN 1941-0069

    Article  ADS  Google Scholar 

  • Elham A, van Tooren MJL (2017) Multi-fidelity wing aerostructural optimization using a trust region filter-SQP algorithm. Struct Multidisc Optim 55(5):1773–1786

    Article  MathSciNet  Google Scholar 

  • Eriksson D, Jankowiak M (2021) High-dimensional Bayesian optimization with sparse axis-aligned subspaces. In: Uncertainty in artificial intelligence. PMLR, pp 493–503

  • Eweis-Labolle JT, Oune N, Bostanabad R (2022) Data fusion with latent map Gaussian processes. J Mech Des 144(9):091703

    Article  Google Scholar 

  • Falgout RD, Yang UM (2002) hypre: a library of high performance preconditioners. In: Sloot PMA, Hoekstra AG, Kenneth Tan CJ, Dongarra JJ (eds) Computational science—ICCS 2002. Springer, Berlin/Heidelberg, pp 632–641. ISBN 978-3-540-47789-1

  • Fatemi A, Ionel DM, Demerdash NAO, Staton DA, Wrobel R, Chong YC (2019) Computationally efficient strand eddy current loss calculation in electric machines. IEEE Trans Ind Appl 55(4):3479–3489. https://doi.org/10.1109/TIA.2019.2903406. ISSN 1939-9367

    Article  CAS  Google Scholar 

  • Fernández-Godino MG, Park C, Kim N-H, Haftka RT (2016) Review of multi-fidelity models. arXiv Preprint. https://doi.org/10.48550/arXiv.1609.07196

  • Forrester A, Sóbester A, Keane A (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A Math Phys Eng Sci 463(2088):3251–3269

    ADS  MathSciNet  Google Scholar 

  • Forrester A, Sóbester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Hoboken

    Book  Google Scholar 

  • Foumani ZZ, Shishehbor M, Yousefpour A, Bostanabad R (2023) Multi-fidelity cost-aware Bayesian optimization. Comput Methods Appl Mech Eng 407:115937

    Article  ADS  MathSciNet  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006. https://doi.org/10.1137/S1052623499350013

    Article  MathSciNet  Google Scholar 

  • Gill PE, Murray W, Saunders MA (2005) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131. https://doi.org/10.1137/S0036144504446096

    Article  ADS  MathSciNet  Google Scholar 

  • Gould NIM, Orban D, Sartenaer A, Toint PL (2005) Sensitivity of trust-region algorithms to their parameters. 4OR 3:227–241

    Article  MathSciNet  Google Scholar 

  • Gratton S, Sartenaer A, Toint PL (2008) Recursive trust-region methods for multiscale nonlinear optimization. SIAM J Optim 19(1):414–444

    Article  MathSciNet  Google Scholar 

  • Gray JS, Hwang JT, Martins JRRA, Moore KT, Naylor BA (2019) OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization. Struct Multidisc Optim 59(4):1075–1104. https://doi.org/10.1007/s00158-019-02211-z

    Article  MathSciNet  Google Scholar 

  • Griewank A, Walther A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia

    Book  Google Scholar 

  • Haimes R, Dannenhoffer J (2013) The engineering sketch pad: a solid-modeling, feature-based, web-enabled system for building parametric geometry. In: 21st AIAA computational fluid dynamics conference. p 3073. https://doi.org/10.2514/6.2013-3073

  • Haimes R, Drela M (2012) On the construction of aircraft conceptual geometry for high-fidelity analysis and design. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. p 683. https://doi.org/10.2514/6.2012-683

  • Haimes R, Dannenhoffer J, Bhagat ND, Allison DL (2016) Multi-fidelity geometry-centric multi-disciplinary analysis for design. In: AIAA modeling and simulation technologies conference. p 4007. https://doi.org/10.2514/6.2016-4007

  • Hanselman D (2003) Brushless permanent magnet motor design. Magna Physics Publishing. ISBN 1881855155

  • Henson VE, Yang UM (2002) BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl Numer Math 41(1):155–177. https://doi.org/10.1016/S0168-9274(01)00115-5. ISSN 0168-9274

    Article  MathSciNet  Google Scholar 

  • Hwang JT, Martins JRRA (2018) A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives. ACM Trans Math Softw. https://doi.org/10.1145/3182393. ISSN 0098-3500

    Article  MathSciNet  Google Scholar 

  • Jo Y, Choi S (2014) Variable-fidelity aerodynamic design using gradient-enhanced kriging surrogate model with regression. In: 52nd aerospace sciences meeting. p 0900

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492

    Article  MathSciNet  Google Scholar 

  • Joseph H, van Bloemen Waanders B (2023) Hyper-differential sensitivity analysis with respect to model discrepancy: optimal solution updating. Comput Methods Appl Mech Eng 412:116082

    Article  ADS  MathSciNet  Google Scholar 

  • Keane A (2003) Wing optimization using design of experiment, response surface, and data fusion methods. J Aircr 40(4):741–750

    Article  Google Scholar 

  • Kennedy GJ, Hicken JE (2015) Improved constraint-aggregation methods. Comput Methods Appl Mech Eng 289:332–354. https://doi.org/10.1016/j.cma.2015.02.017. ISSN 0045-7825

    Article  ADS  MathSciNet  Google Scholar 

  • Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63(3):425–464. https://doi.org/10.1111/1467-9868.00294

    Article  MathSciNet  Google Scholar 

  • Kolev TV (2020) Modular finite element methods. Computer Software. mfem.org

  • Lewis R (1996) A trust region framework for managing approximation models in engineering optimization. In: 6th symposium on multidisciplinary analysis and optimization. p 4101

  • March A, Willcox K (2012a) Constrained multifidelity optimization using model calibration. Struct Multidisc Optim 46(1):93–109

    Article  Google Scholar 

  • March A, Willcox K (2012b) Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives. AIAA J 50(5):1079–1089

    Article  ADS  Google Scholar 

  • Martins JRRA, Hwang JT (2013) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599. https://doi.org/10.2514/1.J052184

    Article  ADS  Google Scholar 

  • Martins JRRA, Ning A (2021) Engineering design optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Morris MD, Mitchell TJ, Ylvisaker D (1993) Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3):243–255

    Article  MathSciNet  Google Scholar 

  • Nagawkar J, Ren J, Xiaosong D, Leifsson L, Koziel S (2021) Single-and multipoint aerodynamic shape optimization using multifidelity models and manifold mapping. J Aircr 58(3):591–608

    Article  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  Google Scholar 

  • Olivanti R, Gallard F, Brézillon J, Gourdain N (2019) Comparison of generic multi-fidelity approaches for bound-constrained nonlinear optimization applied to adjoint-based CFD applications. In: AIAA aviation 2019 forum. p 3102

  • Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60(3):550–591

    Article  MathSciNet  Google Scholar 

  • Réthoré P-E, Fuglsang P, Larsen GC, Buhl T, Larsen TJ, Madsen HA (2014) TOPFARM: multi-fidelity optimization of wind farms. Wind Energy 17(12):1797–1816

    Article  ADS  Google Scholar 

  • Shan S, Wang GG (2010) Metamodeling for high dimensional simulation-based design problems. J Mech Des 132(5):051009. https://doi.org/10.1115/1.4001597. ISSN 1050-0472

    Article  Google Scholar 

  • Shi R, Long T, Ye N, Yufei W, Wei Z, Liu Z (2021) Metamodel-based multidisciplinary design optimization methods for aerospace system. Astrodynamics 5:185–215

    Article  ADS  Google Scholar 

  • Simpson TW, Martins JRRA (2011) Multidisciplinary design optimization for complex engineered systems design: report from an NSF workshop. J Mech Des 133(10):101002. https://doi.org/10.1115/1.4004465

    Article  Google Scholar 

  • Steinmetz CP (1892) On the law of hysteresis (part II.) and other phenomena of the magnetic circuit. Trans Am Inst Electr Eng IX(1):619–758. https://doi.org/10.1109/T-AIEE.1892.5570469. ISSN 2330-9431

    Article  Google Scholar 

  • Sullivan CR (2001) Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimensional or three-dimensional field geometry. IEEE Trans Power Electron 16(1):142–150

    Article  ADS  Google Scholar 

  • Viana FAC, Simpson TW, Balabanov V, Toropov V (2014) Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J 52(4):670–690. https://doi.org/10.2514/1.J052375

    Article  ADS  Google Scholar 

  • Wu N, Kenway G, Mader CA, Jasa J, Martins JRRA (2020) pyOptSparse: a Python framework for large-scale constrained nonlinear optimization of sparse systems. J Open Source Softw 5(54):2564. https://doi.org/10.21105/joss.02564

    Article  ADS  Google Scholar 

  • Wu N, Mader CA, Martins JRRA (2022a) Large-scale multifidelity aerostructural optimization of a transport aircraft. In: 33rd congress of the international council of the aeronautical sciences

  • Wu N, Mader CA, Martins JRRA (2022b) A gradient-based sequential multifidelity approach to multidisciplinary design optimization. Struct Multidisc Optim 65:131–151. https://doi.org/10.1007/s00158-022-03204-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support for the reported research from the National Aeronautics and Space Administration under the Fellowship Award 20-0091. We graciously thank the authors of Foumani et al. (2023) for providing a data file containing their results to allow easy comparison.

Funding

This study was supported by Glenn Research Center (Grant No. 20-Fellows′20-0091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tucker Babcock.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

The code used to implement the E\(^{2}\)M\(^{2}\) algorithm and produce the results presented in Sect. 4.1 can be found on GitHub https://github.com/tuckerbabcock/E2M2.

Additional information

Responsible Editor: Yoojeong Noh

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Reluctivity model

Appendix: Reluctivity model

We model the reluctivity, \(\nu \left( {\varvec{B}}\right)\), as a piecewise-continuous function where each sub-function of \(\nu\) is based on the material it is in. We use constant values for the reluctivity in the motor’s air-gap, magnets and windings. For the air-gap and motor windings, this function takes the value of the reluctivity of free space \(\nu _{\text {0}} = \frac{1}{\mu _{\text {0}}} = \frac{1}{4 \pi \times 10^{-7}}\). For the magnets, we use the constant value \(\nu _{\text {mag}} = \frac{1}{\mu _{\text {r}} \mu _{\text {0}}}\), where \(\mu _{\text {r}}\) is the magnet’s relative permeability, a material-dependent value listed in a material data-sheets. We take \(\mu _\text {r} = 1.04\) for the \(\text {Nd}_2\text {Fe}_{14}\text {B}\) magnets considered in this work.

The reluctivity of the magnetic steel used in the motor’s stator and rotor is a nonlinear function of the magnetic flux density. We use the model given as follows:

$$\begin{aligned} \nu _{\text {Fe}} = \exp \left( f\left( \Vert {\varvec{B}}\Vert \right) \right) , \end{aligned}$$

where \(f\left( \Vert {\varvec{B}}\Vert \right)\) is a cubic B-spline that represents the log-transformed reluctivity as a function of the magnitude of the magnetic flux density. The B-spline knot vector and control points are found by minimizing the least-squares error between the spline and discrete \(B\)-\(\nu\) data points. The control points and knot vector for the Hiperco 50 magnetic steel used for the results presented in this work are listed in Table 8.

Table 8 Control points and knot vector for the cubic B-spline fit used in the Hiperco 50 reluctivity calculation

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babcock, T., Hall, D., Gray, J.S. et al. Multi-fidelity error-estimate-based model management. Struct Multidisc Optim 67, 36 (2024). https://doi.org/10.1007/s00158-023-03731-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03731-5

Keywords

Navigation