Skip to main content
Log in

An integrated two-step strategy for an optimal design of liquid-cooled channel layout based on the MMC–density approach

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper proposes an integrated two-step strategy for an optimal design of liquid-cooled channel layout based on the moving morphable component (MMC)-density approach. The proposed strategy intends to take the advantage of both the MMC approach for its high flexibility in searching a physically reasonable layout and the density approach for its better capacity of topology description. On the basis of the above-mentioned strategy, an intermediate layout is obtained through MMC approach and further optimized as initial solution of density approach step. Through density approach step, the final layout shows smoother boundary while retaining reasonable feature size. The original contributions of this paper are as follows: (i) An assembled quadratic Bézier curves component is proposed to describe the largely curved channel with limited numbers of optimization variables and computation order. (ii) Benefited from explicit geometric description, adaptive mesh refinement (AMR) is applied in MMC approach step for the first time. The application of AMR, from the numerical point of view, has two key ingredients to be highlighted: (i) the accuracy of solution in fluid–solid boundary region can be ensured with relatively limited computational cost. (ii) The contradiction that the difference step of MMC updating needs to be both as small as possible and integer multiple of the mesh size can be avoided. The performance of our methodology is demonstrated by numerical examples aiming for maximal heat exchange with power dissipation constraint. The main finding reveals that the proposed strategy can offer reasonable channel layout with better thermal performance, compared with conventional density approach. The whole numerical implementation relies on OpenFOAM and PETSc open-source software packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The pressure p is regulated through being divided by density \(\rho\) when solving N–S equations in OpenFOAM.

References

  • Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids 5(1):29

    Article  Google Scholar 

  • Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891

    Article  Google Scholar 

  • Barber RW, Emerson DR (2008) Optimal design of microfluidic networks using biologically inspired principles. Microfluid Nanofluid 4(3):179–191

    Article  Google Scholar 

  • Bello-Ochende T, Liebenberg L, Meyer JP (2007) Constructal cooling channels for micro-channel heat sinks. Int J Heat Mass Transf 50(21–22):4141–4150

    Article  MATH  Google Scholar 

  • Bello-Ochende T, Olakoyejo OT, Meyer JP, Bejan A, Lorente S (2013) Constructal flow orientation in conjugate cooling channels with internal heat generation. Int J Heat Mass Transf 57(1):241–249

    Article  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Cornolti L (2018) 2D adaptive Mesh Refinement. CFD-online. https://www.cfd-online.com/Forums/openfoam-community-contributions/118870-2d-adaptive-mesh-refinement-2.html

  • Dang X-P, Park H-S (2011) Design of U-shape milled groove conformal cooling channels for plastic injection mold. Int J Precis Eng Manuf 12(1):73–84

    Article  Google Scholar 

  • Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference

  • Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidisc Optim 57(5):1905–1918

    Article  MathSciNet  MATH  Google Scholar 

  • Feppon F, Allaire G, Dapogny C, Jolivet P (2020) Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing. J Comput Phys 417:109574

    Article  MathSciNet  MATH  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 30(3):181–192

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Huo W, Liu C, Du Z, Liu Z, Guo X (2022) Topology optimization on complex surfaces based on the moving morphable components (MMCs) method and computational conformal mapping (CCM). arXiv preprint arXiv:2201.08190

  • Jarrett A, Kim IY (2011) Design optimization of electric vehicle battery cooling plates for thermal performance. J Power Sources 196(23):10359–10368

    Article  Google Scholar 

  • Koga AA, Lopes ECC, Villa Nova HF, De Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transf 64:759–772

    Article  Google Scholar 

  • Kreissl S, Maute K (2012) Level set based fluid topology optimization using the extended finite element method. Struct Multidisc Optim 46(3):311–326

    Article  MATH  Google Scholar 

  • Lam YC, Zhai LY, Tai K, Fok SC (2004) An evolutionary approach for cooling system optimization in plastic injection moulding. Int J Prod Res 42(10):2047–2061

    Article  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Li CG, Li CL (2008) Plastic injection mould cooling system design by the configuration space method. Comput Aided Des 40(3):334–349

    Article  Google Scholar 

  • Li H, Ding X, Jing D, Xiong M, Meng F (2019a) Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization. Int J Therm Sci 146:106065

    Article  Google Scholar 

  • Li H, Ding X, Meng F, Jing D, Xiong M (2019b) Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study. Int J Heat Mass Transf 144:118638

    Article  Google Scholar 

  • Li H, Yamada T, Jolivet P, Furuta K, Kondoh T, Izui K, Nishiwaki S (2021) Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method. Finite Elem Anal Des 194:103561

    Article  MathSciNet  Google Scholar 

  • Li H, Kondoh T, Jolivet P, Furuta K, Yamada T, Zhu B, Izui K, Nishiwaki S (2022a) Three-dimensional topology optimization of a fluid–structure system using body-fitted mesh adaption based on the level-set method. Appl Math Model 101:276–308

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Kondoh T, Jolivet P, Furuta K, Yamada T, Zhu B, He Zhang, Izui K, Nishiwaki S (2022b) Optimum design and thermal modeling for 2D and 3D natural convection problems incorporating level set-based topology optimization with body-fitted mesh. Int J Numer Methods Engi 123(9):1954–1990

    Article  MathSciNet  Google Scholar 

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid–thermal interaction problems under constant input power. Struct Multidisc Optim 47(4):571–581

    Article  MATH  Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65(7):975–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Park H-S, Dang X-P (2010) Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int J Precis Eng Manuf 11(6):879–890

    Article  Google Scholar 

  • Rettenmaier D, Deising D, Ouedraogo Y, Gjonaj E, De Gersem H, Bothe D, Tropea C, Marschall H (2019) Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. SoftwareX 10:100317

    Article  Google Scholar 

  • Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2018) An optimum design method for a thermal–fluid device incorporating multiobjective topology optimization with an adaptive weighting scheme. J Mech Des 140(3):031402

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Tang LQ, Chassapis C, Manoochehri S (1997) Optimal cooling system design for multi-cavity injection molding. Finite Elem Anal Des 26(3):229–251

    Article  MATH  Google Scholar 

  • Wein F, Dunning PD, Norato JA (2020) A review on feature-mapping methods for structural optimization. Struct Multidisc Optim 62:1–42

    Article  MathSciNet  Google Scholar 

  • Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69(7):1374–1404

    Article  MathSciNet  MATH  Google Scholar 

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidisc Optim 41(4):495–505

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions. Int J Heat Mass Transf 81:878–888

    Article  Google Scholar 

  • Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233

    Article  Google Scholar 

  • Yoon GH (2016) Topology optimization for turbulent flow with Spalart–Allmaras model. Comput Methods Appl Mech Eng 303:288–311

    Article  MathSciNet  MATH  Google Scholar 

  • Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization of thermal–fluid problem using the MMC-based approach. Struct Multidisc Optim 60(1):151–165

    Article  MathSciNet  Google Scholar 

  • Yu M, Ruan S, Gu J, Ren M, Li Z, Wang X, Shen C (2020) Three-dimensional topology optimization of thermal–fluid–structural problems for cooling system design. Struct Multidisc Optim 62(6):3347–3366

    Article  MathSciNet  Google Scholar 

  • Zeng S, Kanargi B, Lee PS (2018) Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization. Int J Heat Mass Transf 121:663–679

    Article  Google Scholar 

  • Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology optimization method with signed distance function. Comput Methods Appl Mech Eng 310:1–32

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Y, Zhu J, Zhan H, Zhang W, Gu Y (2021) A bio-inspired B-spline offset feature for structural topology optimization. Comput Methods Appl Mech Eng 386:114081

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu B, Wang R, Wang N, Li H, Zhang X, Nishiwaki S (2021) Explicit structural topology optimization using moving wide Bezier components with constrained ends. Struct Multidisc Optim 64(1):53–70

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Sheng Pan and Minghao Yu have contributed equally to this work.

Funding

The present work was supported by the National Natural Science Foundation of China (Grant Nos. 11602050, and 11702053), the 111 Project (Grant No. B14013), the Fundamental Research Funds for the Central Universities (Grant No. DUT2019TD37), and Japan Society for the Promotion of Science (No. JP21J13418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests for this paper.

Replication of results

A detailed procedure and flowchart of the proposed method have been presented in Sects. 2 and 3 and one can follow them and reproduce the results. In case of further queries, please contact the corresponding authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: Kentaro Yaji

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection: Flow-driven Multiphysics

Guest Editors: J Alexandersen, C S Andreasen, K Giannakoglou, K Maute, K Yaji.

Appendix: Sensitivity analysis

Appendix: Sensitivity analysis

In this paper, the adjoint equations and adjoint BCs are derived by continuous adjoint method and subsequently discretized and solved. Using Lagrange’s method, the optimization problem given by Eqs. (17) and (18) can be substituted by an unconstrained optimization problem. The Lagrangian \({\mathcal {L}}({\varvec{u}}, p, T, \gamma )\) can be formulated as (Sato et al. 2018):

$$\begin{aligned} {\mathcal {L}} =&\varPsi +\int _{\varOmega }[\rho ( {\varvec{u}} \cdot \nabla ) {\varvec{u}}-\mu \nabla \cdot \nabla {\varvec{u}}+\nabla p+\alpha {\varvec{u}}] \cdot {\varvec{v}} {\text {d}}\varOmega \\&\quad +\int _{\varOmega }(-\nabla \cdot {\varvec{u}})q {\text {d}}\varOmega +\int _{\varOmega }[\rho c({\varvec{u}}\cdot \nabla T)-\nabla \cdot k \nabla T -Q]t {\text {d}}\varOmega \ \\&\quad +\int _{\varGamma _{\text {in}}}({\varvec{u}}-{\varvec{u}}_{\text {in}}) \cdot {\varvec{v}} _{\text {in}} {\text {d}}\varGamma +\int _{\varGamma _{\text {wall}}} {\varvec{u}}\cdot {\varvec{v}} _{\text {wall}} {\text {d}}\varGamma +\int _{\varGamma _{\text {out}}}(-p{\varvec{I}}+\mu \nabla {\varvec{u}})\cdot {\mathbf {n}} \cdot {\varvec{v}} _{\text {out}} {\text {d}}\varGamma \\&\quad +\int _{S_{\text {in}}}(T-T_{\text {in}})t_{\text {in}} {\text {d}} S + \int _{S_{\text {wall}}}k\nabla T t_{\text {wall}}\cdot {\varvec{n}} {\text {d}} S, \end{aligned}$$
(27)

where \({\varvec{v}}, q, t, {\varvec{v}}_{\text {in}},{\varvec{v}}_{\text {wall}}, {\varvec{v}}_{\text {out}}, t_{\text {in}}, t_{\text {wall}}\) represent the corresponding Lagrangian multipliers. Through partial integration, Eq. (27) can be inferred as

$$\begin{aligned} {\mathcal {L}} =&\varPsi +\int _{\varOmega }\rho ({\varvec{u}}\cdot \nabla ){\varvec{u}}\cdot {\varvec{v}}+\mu \nabla {\varvec{u}} :\nabla {\varvec{v}}-p \nabla \cdot {\varvec{v}} +\alpha {\varvec{u}} \cdot {\varvec{v}}{\text {d}}\varOmega \\&\quad + \int _{\varOmega }q(-\nabla \cdot {\varvec{u}}){\text {d}}\varOmega + \int _{\varOmega }\rho c\nabla Tt\cdot {\varvec{u}}+k \nabla T \cdot \nabla t-Qt {\text {d}} \varOmega \\&\quad + \int _{\varGamma } (- \mu \nabla {\varvec{u}} + p {\varvec{I}})\cdot {\varvec{v}} \cdot {\varvec{n}} {\text {d}} \varGamma - \int _{S} k \nabla Tt \cdot {\varvec{n}} {\text {d}}S\\ {}&\quad +\int _{\varGamma _{\text {in}}}({\varvec{u}}-{\varvec{u}}_{\text {in}}) \cdot {\varvec{v}}_{\text {in}} {\text {d}}\varGamma +\int _{\varGamma _{\text {wall}}} {\varvec{u}}\cdot {\varvec{v}}_{\text {wall}} {\text {d}}\varGamma +\int _{\varGamma _{\text {out}}}(-p{\varvec{I}}+\mu \nabla {\varvec{u}})\cdot {\varvec{n}} \cdot {\varvec{v}}_{\text {out}} {\text {d}}\varGamma \\&\quad +\int _{S_{\text {in}}}(T-T_{\text {in}})t_{\text {in}} {\text {d}} S + \int _{S_{\text {wall}}}k\nabla T t_{\text {wall}}\cdot {\varvec{n}} {\text {d}} S. \end{aligned}$$
(28)

In such case, the Karush–Kuhn–Tucker conditions for PDE constrained optimization problems should be satisfied:

$$\left\{ \begin{array}{l} {\mathcal {L}}_{{\varvec{u}}}=\lim \nolimits _{h \rightarrow 0} \dfrac{{\mathcal {L}}({\varvec{u}} + h {\varvec{w}})-{\mathcal {L}}({\varvec{u}})}{h}=\varPsi _{{\varvec{u}}} + \langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{{\varvec{u}}}=0, \\ {\mathcal {L}}_{p}=\lim \nolimits _{h \rightarrow 0} \dfrac{{\mathcal {L}}(p + h r)-{\mathcal {L}}(p)}{h}=\varPsi _{p} + \langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{p}=0,\\ {\mathcal {L}}_{T}=\lim \nolimits _{h \rightarrow 0} \dfrac{{\mathcal {L}}(T + h e)-{\mathcal {L}}(T)}{h}=\varPsi _{T} + \langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{T}=0, \end{array}\right.$$
(29)

where \({\varvec{w}}, r, e\) are the direction of Gâteaux derivative; R, C represent primal governing equations and primal BCs, respectively. Thus, the derivative versus pseudo density of objective function can be inferred as

$$\begin{aligned} \dfrac{{\text {d}}\varPsi }{{\text {d}}\gamma }&=\varPsi _{{\varvec{u}}}\dfrac{\partial {\varvec{u}}}{\partial \gamma }+\varPsi _{p}\dfrac{\partial p}{\partial \gamma }+\varPsi _{T}\dfrac{\partial T}{\partial \gamma }+\varPsi _{\gamma }\\ {}&\quad +\langle \lambda ,{\varvec{R}},{\varvec{C}}\rangle _{{\varvec{u}}}\dfrac{\partial {\varvec{u}}}{\partial \gamma }+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{p}\dfrac{\partial p}{\partial \gamma }+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{T}\dfrac{\partial T}{\partial \gamma }+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{\gamma }\\ {}&=(\varPsi _{{\varvec{u}}}+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{{\varvec{u}}})\dfrac{\partial {\varvec{u}}}{\partial \gamma }+(\varPsi _{p}+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{p})\dfrac{\partial p }{\partial \gamma }+ (\varPsi _{T}+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{T})\dfrac{\partial T}{\partial \gamma }\\ {}&\quad +\varPsi _{\gamma }+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{\gamma }\\ {}&=\varPsi _{\gamma }+\langle \lambda ,{\varvec{R}},{\varvec{C}} \rangle _{\gamma }. \end{aligned}$$
(30)

The Gâteaux derivative of the Lagrangian with respect to state variables is given as

$$\begin{aligned} \left\{ \begin{aligned} {\mathcal {L}}_{{\varvec{u}}}&=\varPsi _{{\varvec{u}}}+\int _{\varOmega }\rho ({\varvec{w}}\cdot \nabla ){\varvec{u}}\cdot {\varvec{v}}+({\varvec{u}}\cdot \nabla ){\varvec{w}}\cdot {\varvec{v}}+\mu \nabla {\varvec{w}} :\nabla {\varvec{v}}+\alpha {\varvec{w}} \cdot {\varvec{v}}{\text {d}}\varOmega&\\ {}&\quad + \int _{\varOmega }q(-\nabla \cdot {\varvec{w}}){\text {d}}\varOmega +\int _{\varOmega }\rho c\nabla Tt\cdot {\varvec{w}}{\text {d}} \varOmega + \int _{\varGamma } (- \mu \nabla {\varvec{w}})\cdot {\varvec{n}} \cdot {\varvec{v}} {\text {d}} \varGamma&\\ {}&+\int _{\varGamma _{\text {in}}} {\varvec{w}}\cdot {\varvec{v}}_{\text {in}} {\text {d}}\varGamma +\int _{\varGamma _{\text {wall}}} {\varvec{w}}\cdot {\varvec{v}}_{\text {wall}} {\text {d}}\varGamma + \int _{\varGamma _{\text {out}}}\mu \nabla {\varvec{w}}\cdot {\varvec{n}} \cdot {\varvec{v}}_{\text {out}} {\text {d}}\varGamma&\\ {\mathcal {L}}_{p}&=\varPsi _{p}+\int _{\varOmega }- r \nabla \cdot {\varvec{v}}{\text {d}}\varOmega +\int _{\varGamma }r{\varvec{v}}\cdot {\varvec{n}}{\text {d}}\varGamma -\int _{\varGamma _{\text {out}}}r{\varvec{n}}\cdot {\varvec{v}}_{\text {out}}{\text {d}}\varGamma&\\ {\mathcal {L}}_{T}&=\varPsi _{T}+\int _{\varOmega }({\varvec{u}}\cdot \nabla e) t+k\nabla e \nabla t {\text {d}} \varOmega&\\ {}&-\int _{S}k\nabla et\cdot {\varvec{n}} {\text {d}}S+\int _{S_{\text {in}}}et_{\text {in}}{\text {d}}S+\int _{S_{\text {wall}}}k\nabla et_{\text {wall}}\cdot {\varvec{n}}{\text {d}}S,&\end{aligned}\right. \end{aligned}$$
(31)

which can be reformulated as

$$\begin{aligned} \left\{ \begin{aligned} {\mathcal {L}}_{{\varvec{u}}}&=\varPsi _{{\varvec{u}}}+\int _{\varOmega }[\rho \nabla {\varvec{u}}\cdot {\varvec{v}}-\rho ({\varvec{u}}\cdot \nabla ){\varvec{v}}-\mu \nabla \cdot \nabla {\varvec{v}}+\alpha {\varvec{v}}+\rho ct\nabla T]\cdot {\varvec{w}}{\text {d}}\varOmega +\int _{\varOmega }\nabla q\cdot {\varvec{w}}{\text {d}}\varOmega&\\ {}&+\int _{\varGamma }\rho ({\varvec{u}}\cdot {\varvec{n}}){\varvec{v}}\cdot {\varvec{w}}+(-q{\varvec{I}}+\mu \nabla {\varvec{v}})\cdot {\varvec{n}}\cdot {\varvec{w}}{\text {d}}\varGamma +\int _{\varGamma }(-\mu \nabla {\varvec{w}})\cdot {\varvec{n}}\cdot {\varvec{v}}{\text {d}}\varGamma&\\ {}&+\int _{\varGamma _{\text {in}}}{\varvec{w}}\cdot {\varvec{v}}_{\text {in}}{\text {d}}\varGamma +\int _{\varGamma _{\text {wall}}}{\varvec{w}}\cdot {\varvec{v}}_{\text {wall}}{\text {d}}\varGamma +\int _{\varGamma _{\text {out}}}\mu \nabla {\varvec{w}}\cdot {\varvec{n}} \cdot {\varvec{v}}_{\text {out}} {\text {d}}\varGamma&\\ {\mathcal {L}}_{p}&=\varPsi _{p}+\int _{\varOmega }-r\nabla \cdot {\varvec{v}}{\text {d}}\varOmega +\int _{\varGamma }r{\varvec{v}}\cdot {\varvec{n}}{\text {d}}\varGamma -\int _{\varGamma _{\text {out}}}r{\varvec{n}}\cdot {\varvec{v}}_{\text {out}}{\text {d}}\varGamma&\\ {\mathcal {L}}_{T}&=\varPsi _{T}-\int _{\varOmega }(\rho c{\varvec{u}}\cdot \nabla t+k\nabla ^{2}t)e{\text {d}}\varOmega&\\ {}&+\int _{S}(\rho c{\varvec{u}}t+k\nabla t)\cdot {\varvec{n}}e{\text {d}}S-\int _{S}k\nabla et\cdot {\varvec{n}}{\text {d}}S&\\ {}&+\int _{S_{\text {in}}}et_{\text {in}}{\text {d}}S+\int _{S_{\text {wall}}}k\nabla et_{\text {wall}}\cdot {\varvec{n}}{\text {d}}S.&\end{aligned}\right. \end{aligned}$$
(32)

Due to the arbitrary of Gáteaux derivative direction, all integral items but Gáteaux derivative parts ought to equal zero. Then, the adjoint equations, the adjoint BCs can be derived by merging Gateaux derivative parts, respectively. Now consider a generic integral-type objective function of the following form:

$$\begin{aligned} \varPsi&=\int \limits _{\varOmega }A({\varvec{u}}, \nabla {\varvec{u}}, p, T, \nabla T, \gamma ){\text {d}}\varOmega \\ {}&\quad +\int \limits _{\varGamma }B_{\text {f}}({\varvec{u}}, \nabla {\varvec{u}}, p, T, \nabla T, \gamma ){\text {d}}\varGamma +\int \limits _{S}B_{t}({\varvec{u}}, \nabla {\varvec{u}}, p, T, \nabla T, \gamma ){\text {d}}S, \end{aligned}$$
(33)

where A, \(B_{\text {f}}\), \(B_{\text {t}}\) are objective function defined in the domain, the fluid and temperature boundary, respectively. The derivatives versus state variables of the objective function are

$$\begin{aligned} \left\{ \begin{aligned} \varPsi _{{\varvec{u}}}&=\int \limits _{\varOmega }\left( \dfrac{\partial A}{\partial {\varvec{u}}}-\nabla \cdot \dfrac{\partial A}{\partial \nabla {\varvec{u}}}\right) \cdot {\varvec{w}}{\text {d}}\varOmega +\int \limits _{\varGamma _{\text {out}}}(\dfrac{\partial A}{\partial {\varvec{u}}\nabla }\cdot {\varvec{n}}+\dfrac{\partial B_{f}}{\partial {\varvec{u}}})\cdot {\varvec{w}}{\text {d}} \varGamma&\\ \varPsi _{p}&=\int \limits _{\varOmega }\dfrac{\partial A}{\partial p}\cdot r{\text {d}}\varOmega +\int \limits _{\varGamma _{\text {out}}}\dfrac{\partial B_{f}}{\partial p}\cdot r{\text {d}}\varGamma&\\ \varPsi _{T}&=\int \limits _{\varOmega }\left( \dfrac{\partial A}{\partial T}-\nabla \cdot \dfrac{\partial A}{\partial \nabla T}\right) \cdot e{\text {d}}\varOmega +\int \limits _{S_{\text {wall}}}(\dfrac{\partial A}{\partial T}\cdot {\varvec{n}}+\dfrac{\partial B_{t}}{\partial T})\cdot e{\text {d}} S.&\end{aligned}\right. \end{aligned}$$
(34)

After substituting Eq. (34) into Eq. (32), the adjoint equations can be derived:

$$\begin{aligned} \left\{ \begin{aligned} \dfrac{\partial A}{\partial T}-\nabla \cdot \dfrac{\partial A}{\partial \nabla T}&=\rho c{\varvec{u}}\cdot \nabla t+k\nabla ^{2}t&\\ \dfrac{\partial A}{\partial p}&=\nabla \cdot {\varvec{v}}&\\ -\dfrac{\partial A}{\partial {\varvec{u}}}+\nabla \cdot \dfrac{\partial A}{\partial \nabla {\varvec{u}}}&=\rho \nabla {\varvec{u}}\cdot {\varvec{v}}-\rho ({\varvec{u}}\cdot \nabla ){\varvec{v}}-{\mu \nabla \cdot \nabla {\varvec{v}}}+\alpha _{f}{\varvec{v}}+\rho c t\nabla T+\nabla q,&\end{aligned}\right. \end{aligned}$$
(35)

with adjoint BCs:

$$\begin{aligned} \left\{ \begin{aligned} t&=0&\text { on }S_{\text {in}}\\ -\dfrac{\partial A}{\partial \nabla T}\cdot {\varvec{n}}-\dfrac{\partial B_{t}}{\partial T}&=(\rho ct{\varvec{u}}+k\nabla t)\cdot {\varvec{n}}&\text { on } S _{\text {wall}}\\ -\dfrac{\partial B_{\text {f}}}{\partial p}&={\varvec{v}}\cdot {\varvec{n}}&\text { on }\varGamma _{in\cup wall}\\ -\dfrac{\partial A}{\partial {\varvec{u}}\nabla }\cdot {\varvec{n}}-\dfrac{\partial B_{\text {f}}}{\partial {\varvec{u}}}&=\rho ({\varvec{u}}\cdot {\varvec{n}}){\varvec{v}}+(-q{\mathbf {I}}+\mu \nabla {\varvec{v}})\cdot {\varvec{n}}&\text { on } \varGamma _{\text {out}}.\\ \end{aligned}\right. \end{aligned}$$
(36)

Using the adjoint variables, the stationary conditions meet the following conditions for the Lagrangian multipliers:

$$\begin{aligned} \left\{ \begin{aligned} {\varvec{v}}&={\varvec{u}}_{a}&\\q&=p_{a}&\\t&=T_{a}&\\ {\varvec{v}}_{\text {in}}&=-\rho ({\varvec{u}}\cdot {\varvec{n}}){\varvec{v}}\cdot {\varvec{w}}+(-q{\mathbf {I}}+\mu \nabla {\varvec{v}})\cdot {\varvec{n}}\cdot {\varvec{w}}&\\ {\varvec{v}}_{\text {wall}}&=-\rho ({\varvec{u}}\cdot {\varvec{n}}){\varvec{v}}\cdot {\varvec{w}}+(-q{\mathbf {I}}+\mu \nabla {\varvec{v}})\cdot {\varvec{n}}\cdot {\varvec{w}}&\\ {\varvec{v}}_{\text {out}}&={\varvec{v}}&\\ t_{\text {in}}&=-(\rho ct{\varvec{u}}+k\nabla t)\cdot {\varvec{n}}&\\t_{\text {wall}}&=t.&\end{aligned}\right. \end{aligned}$$
(37)

In this paper, the objective function is set as \(\int \limits _{\varOmega }T{\text {d}}\varOmega /\left| \varOmega \right|\), that is \(A=T\); \(B_{\text {f}}=0\), \(B_{t}=0\). Substituting above equation into Eqs. (35) and (36), Eqs. (22) and (23) can be derived eventually.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Yu, M., Li, H. et al. An integrated two-step strategy for an optimal design of liquid-cooled channel layout based on the MMC–density approach. Struct Multidisc Optim 65, 221 (2022). https://doi.org/10.1007/s00158-022-03315-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-022-03315-9

Keywords

Navigation