Skip to main content
Log in

A new constraint on principal stress direction variance to improve load bearing capacity

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The present study addresses a simplified topology optimization method to improve load bearing capacity. Topology optimization taking account of structurally nonlinear and complex behavior is an important topic from the viewpoint of mechanics. However, most methodologies require complex analytical derivation of sensitivity analysis and high computational cost to obtain the optimal solution. In light of this, we propose a practical design method employing the principal direction of Cauchy stress and the directional statistics, to improve load bearing capacity indirectly with much lower computational cost than those based on complex nonlinear structural analysis. Finally, we discuss setting of optimization problems, and demonstrate the accuracy and performance of the proposed method with a series of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alberdi R, Zhang G, Li L, Khandelwel K (2015) A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. Int J Numer Methods Eng 52:507–526

    Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Bluhm GL, Sigmund O, Poulios K (2020) Internal contact modeling for finite strain topology optimization. arXiv preprint. arXiv:2010.14277

  • Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237

    Article  Google Scholar 

  • Buhl T, Pedersen C, Sigmund O (2000) Stiffness design geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19(2):93–104

    Article  Google Scholar 

  • Cheng G, Xu L (2016) Two scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint. Struct Multidisc Optim 54:1283–1296

    Article  MathSciNet  Google Scholar 

  • Cheng L, Zhang P, Biyikli E, Bai J, Robbins J, To A (2017) Efficient design optimization of variable-density cellular structures for additive manufacturing: theory and experimental validation. Rapid Prototyp J 23(4):660–677

    Article  Google Scholar 

  • Cheng L, Liu J, To AC (2018) Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design. Struct Multidisc Optim 58:511–535

    Article  Google Scholar 

  • Clausen A, Aage N, Sigmund O (2015) Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng 290:524–541

    Article  MathSciNet  Google Scholar 

  • Clausen A, Aage N, Sigmund O (2016) Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2:250–257

    Article  Google Scholar 

  • Clausen A, Andreassen E, Sigmund O (2017) Topology optimization of 3D shell structures with porous infill. Acta Mech Sin 33(4):778–791

    Article  MathSciNet  Google Scholar 

  • Deng J, Chen W (2017) Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty. Struct Multidisc Optim 56:1–19

    Article  MathSciNet  Google Scholar 

  • Deng S, Suresh K (2017) Topology optimization under thermo-elastic buckling. Struct Multidisc Optim 55:1759–1772

    Article  MathSciNet  Google Scholar 

  • Ferrari F, Sigmund O (2019) Revisiting topology optimization with buckling constraints. Struct Multidisc Optim 59:1401–1415

    Article  MathSciNet  Google Scholar 

  • Gao X, Ma H (2015) Topology optimization of continuum structures under buckling constraints. Comput Struct 157:142–152

    Article  Google Scholar 

  • Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidisc Optim 48:33–47

    Article  MathSciNet  Google Scholar 

  • Jansen M, Lombaelt G, Schevenels M, Sigmund O (2014) Topology optimization of fail-safe structures using a simplified local damage model. Struct Multidisc Optim 49:657–666

    Article  MathSciNet  Google Scholar 

  • Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multdisc Optim 52:507–526

    Article  MathSciNet  Google Scholar 

  • Kato J, Yachi D, Kyoya T, Terada K (2018) Micro-macro concurrent topology optimization for nonlinear solids with a decoupling multiscale analysis. Int J Numer Methods Eng 113(8):1937–1954

    Article  MathSciNet  Google Scholar 

  • Lawry M, Maute K (2017) Level set shape and topology optimization of finite strain bilateral contact problems. Int J Numer Methods Eng 113(8):1340–1369

    Article  MathSciNet  Google Scholar 

  • Li L, Zhang G, Khandelwal K (2018) Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model. Struct Multdisc Optim 58:1589–1618

    Article  MathSciNet  Google Scholar 

  • Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multdisc Optim 47(3), 409–421

    Article  MathSciNet  Google Scholar 

  • Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, Savoye Y, Tu C, Cohen-Or D, Chen B (2014) Build-to-last: strength to weight 3D printed objects. ACM Trans Graph 33(4):97:1–97:10

  • Mardia KV (1972) Statistics of directional data. Academic Press, London

    MATH  Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional statistics. Wiley series in probability and statistics. Wiley, London

  • Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structure. Struct Multidisc Optim 15:81–91

    Article  Google Scholar 

  • Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with buckling load criterion. Struct Multidisc Optim 10:71–78

    Article  Google Scholar 

  • Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809–834

    Article  MathSciNet  Google Scholar 

  • Schwarz S, Ramm E (2001) Sensitivity analysis and optimization for non-linear structural response. Eng Comput 18(3/4):610–641

    Article  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573

    Article  MathSciNet  Google Scholar 

  • Wallin M, Jonsson J, Wingren E (2016) Topology optimization based on finite strain plasticity. Struct Multidisc Optim 54:783–793

    Article  MathSciNet  Google Scholar 

  • Wallin M, Iversson N, Tortorelli DA (2018) Stiffness optimization of non-linear elastic structures. Comput Methods Appl Mech Eng 330:292–307

    Article  MathSciNet  Google Scholar 

  • Wang F, Sigmund O, Jansen JS (2014a) Design of material with prescribed nonlinear properties. J Mech Phys Solods 69:156–174

    Article  MathSciNet  Google Scholar 

  • Wang F, Stefanov B, Sigmund O, Jansen JS (2014b) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problem. Comput Methods Appl Mech Eng 276:453–472

    Article  MathSciNet  Google Scholar 

  • Wang C, Zhu JH, Zhang WH, Li SY, Kong, J (2018) Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures. Struct Multidisc Optim 58:35–50

    Article  MathSciNet  Google Scholar 

  • Wu J, Wang C, Zhang X, Westermann R (2016) Self-supporting rhombic infill structures for additive manufacturing. Comput -Aided Des 80:32–42

    Article  Google Scholar 

  • Wu J, Aage R, Westermann R, Sigmund O (2018) Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE 24(2):1127–1140

    Google Scholar 

  • Xu L, Cheng G (2018) Two-scale concurrent topology optimization with multiple micro materials based on principal stress orientation. Struct Multidisc Optim 57:2093–2107

    Article  MathSciNet  Google Scholar 

  • Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optim 10:197–208

    Article  Google Scholar 

  • Zhou M, Fleury G (2016) Fail-safe topology optimization. Struct Multidisc Optim 52:1225–1243

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by MEXT KAKENHI Grant Nos. 19H00781, 17KT0038, 16KK0141, and Honda R&D. This support is gratefully acknowledged. Finally, the authors would like to devote this paper to Dr. Raphael Haftka. Rafi was exemplary as an educator throughout his legendary research career. The second author of this paper remembers well that he started learning about “Structural Optimization” from Rafi’s wonderful book “Elements of Structural Optimization.” This book is just one of Rafi’s great contributions to our community, but it has been conspicuous among the educational books and still continues to educate many students all over the world. The authors represent our heartfelt respects and gratitude to Dr. Raphael Haftka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

All the simulations and the algorithms should be able to reproduce the results with the details provided in this paper. The corresponding author may be contacted if there are additional queries for implementations.

Additional information

Responsible Editor: Nam Ho Kim

Special Issue dedicated to Dr. Raphael T. Haftka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Formulae for each derivative term

Appendix 1: Formulae for each derivative term

This section gives more details about how to derive the sensitivity of the constraint shown in Eqs. (34) to (38).

1.1 Sensitivity of \(V^{\text{min}^{\prime }}\)

First, it is expressed as follows:

$$\begin{aligned} \frac{\partial V^{\text{min}^{\prime }}}{\partial V_l}= & {} \frac{\partial V^{\text{min}^{\prime }}}{\partial V^{\text{PN}^{\prime }}} \frac{\partial V^{\text{PN}^{\prime }}}{\partial V_l} \end{aligned}$$
(39)
$$\begin{aligned} \frac{\partial V^{\text{min}^{\prime }}}{\partial \rho _j}= & {} \frac{\partial V^{\text{min}^{\prime }}}{\partial V^{\text{PN}^{\prime }}} \frac{\partial V^{\text{PN}^{\prime }}}{\partial \rho _j} \end{aligned}$$
(40)

Each derivative term is expressed by the following formulae:

$$\begin{aligned} \frac{\partial V^{\text{min}^{\prime }}}{\partial V^{\text{PN}^{\prime }}}&=-\frac{1}{\left( V^{\text{PN}^{\prime }}\right)^2} \end{aligned}$$
(41)
$$\begin{aligned} \frac{\partial V^{\text{PN}^{\prime }}}{\partial V_l}&= \left[ \frac{1}{n^{\text{loc}}}\sum _{m\in \Omega } \left( \frac{ \rho _m^{\text{loc}} }{V_m} \right)^p \right]^{\frac{1}{p}-1} \\&\quad \times \frac{1}{n^\text{loc}} \left( \frac{ \rho _l^{\text{loc}} }{V_l} \right)^{p-1} \times \left\{ - \frac{ \rho _l^{\text{loc}} }{\left( V_l \right)^2} \right\} \end{aligned}$$
(42)
$$\begin{aligned} \frac{\partial V^{\text{PN}^{\prime }}}{\partial \rho _j}&= \left[ \frac{1}{n^{\text{loc}}}\sum _{m\in \Omega } \left( \frac{ \rho _m^{\text{loc}} }{V_m} \right)^p \right]^{\frac{1}{p}-1} \\&\quad \times \frac{1}{n^\text{loc}} \left( \frac{ \rho _l^{\text{loc}} }{V_l} \right)^{p-1} \times \frac{ \left( \frac{\eta^{\prime} \rho _j^{\eta^{\prime}-1}}{ \sum _{k\in \mathbb{O}_l} 1} \right) }{V_l} \end{aligned}$$
(43)

1.2 Sensitivity of \(V_l\)

First, it is expressed as follows:

$$\begin{aligned} \frac{\partial V_l}{\partial \varvec{\sigma }_{r}}= -\frac{\partial \bar{R}_l}{\partial \varvec{\sigma }_{r}}. \end{aligned}$$
(44)

Next, term \(\partial \bar{R}_l/\partial \varvec{\sigma }_{r}\) can be calculated according to the chain rule of differentiation as follows:

$$\begin{aligned} \frac{\partial \bar{R}_l}{\partial \varvec{\sigma }_{r}}&= \frac{\partial \bar{R}_l}{\partial \bar{C}_l} \frac{\partial \bar{C}_l}{\partial \varvec{\sigma }_{r}} + \frac{\partial \bar{R}_l}{\partial \bar{S}_l} \frac{\partial \bar{S}_l}{\partial \varvec{\sigma }_{r}} \\&= \frac{\partial \bar{R}_l}{\partial \bar{C}_l} \left( \frac{\partial \bar{C}_l}{\partial \sigma_{r}^{\text{vM}}} \frac{\partial \sigma_{r}^{\text{vM}}}{\partial \varvec{\sigma }_{r}} + \frac{\partial \bar{C}_l}{\partial \theta_{r}} \frac{\partial \theta_{r}}{\partial \varvec{\sigma }_{r}} \right) \\& \quad + \frac{\partial \bar{R}_l}{\partial \bar{S}_l} \left( \frac{\partial \bar{S}_l}{\partial \sigma_{r}^{\text{vM}}} \frac{\partial \sigma_{r}^{\text{vM}}}{\partial \varvec{\sigma }_{r}} + \frac{\partial \bar{S}_l}{\partial \theta_{r}} \frac{\partial \theta_{r}}{\partial \varvec{\sigma }_{r}} \right). \end{aligned}$$
(45)

Each derivative term is expressed by the following formulae:

$$\begin{aligned}&\frac{\partial \bar{R}_l}{\partial \bar{C}_l} =\frac{\bar{C}_l}{\sqrt{\bar{C}_l^2+\bar{S}_l^2}} \end{aligned}$$
(46)
$$\begin{aligned}&\frac{\partial \bar{R}_l}{\partial \bar{S}_l} =\frac{\bar{S}_l}{\sqrt{\bar{C}_l^2+\bar{S}_l^2}} \end{aligned}$$
(47)
$$\begin{aligned}&\frac{\partial \bar{C}_l}{\partial \sigma_{r}^{\text{vM}}} =\frac{ \zeta^{\prime}(\sigma_{r}^{\text{vM}})\cos 2\theta_{r} \left\{ \sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}}) \right\} }{ \left\{ \sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}}) \right\}^2 } \\& -\frac{ \left\{ \sum _{r\in \mathbb{O}_l} \zeta (\sigma_{r}^{\text{vM}}) \cos 2\theta_{r} \right\} \zeta^{\prime}(\sigma_{r}^{\text{vM}}) }{ \left\{ \sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}}) \right\}^2} \end{aligned}$$
(48)
$$\begin{aligned}&\frac{\partial \sigma_{r}^{\text{vM}}}{\partial \varvec{\sigma }_{r}^{\text{vec}}} =\frac{\varvec{P}\varvec{\sigma }_{r}^{\text{vec}}}{\sigma_{r}^{\text{vM}}} \end{aligned}$$
(49)
$$\begin{aligned}&\frac{\partial \bar{C}_l}{\partial \theta_{r}} =\frac{-2}{\sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}})}\zeta (\sigma_{r}^{\text{vM}})\sin 2\theta_{r} \end{aligned}$$
(50)
$$\begin{aligned}&\frac{\partial \bar{S}_l}{\partial \sigma_{r}^{\text{vM}}} =\frac{ \zeta^{\prime}(\sigma_{r}^{\text{vM}})\sin 2\theta_{r} \left\{ \sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}}) \right\} }{ \left\{ \sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}}) \right\}^2 } \\& -\frac{ \left\{ \sum _{r\in \mathbb{O}_l} \zeta (\sigma_{r}^{\text{vM}}) \sin 2\theta_{r} \right\} \zeta^{\prime}(\sigma_{r}^{\text{vM}}) }{ \left\{ \sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}}) \right\}^2} \end{aligned}$$
(51)
$$\begin{aligned}&\frac{\partial \bar{S}_l}{\partial \theta_{r}} =\frac{2}{\sum _{r\in \mathbb{O}_l}\zeta (\sigma_{r}^{\text{vM}})}\zeta (\sigma_{r}^{\text{vM}})\cos 2\theta_{r} \end{aligned}$$
(52)
$$\begin{aligned}&\frac{\partial \zeta (\sigma_{r}^{\text{vM}})}{\partial \sigma_{r}^{\text{vM}}} =\frac{a}{4\cosh^2 \left\{ \frac{1}{2}a \left( \sigma_{r}^{\text{vM}}-\bar{\sigma } \right) \right\} } \end{aligned}$$
(53)

1.3 Sensitivity of \(\theta _{r}\)

The formulae are expressed as follows:

$$\begin{aligned}&\frac{\partial \theta _{r}}{\partial \varvec{\sigma }_{r}} = \frac{1}{1+\left( \frac{N_{{r}_y}}{N_{{r}_x}} \right)^2} \times \left[ \frac{\frac{\partial N_{{r}_y}}{\partial \varvec{\sigma }}N_{{r}_x} -N_{j_y}\frac{\partial N_{{r}_x}}{\partial \varvec{\sigma }}}{\left( N_{{r}_x}\right)^2} \right] \end{aligned}$$
(54)
$$\begin{aligned}& \left( \varvec{\sigma }_{r} - \lambda _{r} \varvec{I} \right) \frac{\partial \varvec{N}_{r}}{\partial \varvec{\sigma }_{r}} = \varvec{N}_{r} \otimes \frac{\partial \lambda _{r}}{\partial \varvec{\sigma }_{r}} - \varvec{I} \otimes \varvec{N}_{r}, \end{aligned}$$
(55)

where \(\varvec{I}\) represents an identity matrix. It should also be noted that, with respect to Eq. (55), \(\left( \varvec{\sigma }_{r} - \lambda _{r} \varvec{I} \right) \) has no invert matrix and therefore \(\partial {\varvec{N}_{r}}/\partial {\varvec{\sigma}_{r}}\) gives indefinite solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamada, H., Kato, J., Uozumi, H. et al. A new constraint on principal stress direction variance to improve load bearing capacity. Struct Multidisc Optim 64, 3209–3225 (2021). https://doi.org/10.1007/s00158-021-03079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03079-8

Keywords

Navigation