Skip to main content
Log in

A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Multi-fidelity (MF) surrogate models have been widely adopted in simulation-based engineering design problems to reduce the computational cost by fusing data with diverse fidelity levels. Most of the MF modeling methods only apply to the problems with hierarchical low-fidelity (LF) models. However, the LF models obtained from different simplification approaches often vary in fidelity levels throughout the design space, namely, the multiple LF models are non-hierarchical. To address this challenge, a MF surrogate modeling method based on variance-weighted sum (VWS-MFS) is developed to flexibly handle multiple non-hierarchical LF data in this work. Firstly, each set of the non-hierarchical LF data is allocated diverse weights according to uncertainties quantified by variances of constructed Kriging models, which enables all the LF data to be fused and contribute to the trend function reflecting the response trend of the true model. Secondly, for more precise scaling factor between HF and LF models and mean square error (MSE) estimation, an improved hierarchical kriging (IHK) model is introduced to construct the MF surrogate model enabling the LF model scaled by a varied scaling factor to capture the characteristics of the HF model. The performance of the proposed VWS-MFS method is compared to three MF surrogate models through several numerical examples and one engineering case. Results show that the proposed method provides more accurate MF surrogate models under the same computational cost. Additionally, the proposed method saved the computational cost by more than 59.61% with the same model accuracy compared to the Kriging model built with HF data for the engineering case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ariyarit A, Sugiura M, Tanabe Y, Kanazaki M (2018) Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design. Eng Optim 50:1016–1040

    Article  MathSciNet  Google Scholar 

  • Beachy AJ, Clark DL, Bae H, Forster EE (2020) Expected effectiveness based adaptive multi-fidelity modeling for efficient design optimization. In: AIAA Scitech 2020 Forum

  • Bryson DE, Rumpfkeil MP (2017) All-at-once approach to multifidelity polynomial chaos expansion surrogate modeling. Aerosp Sci Technol 70:121–136

    Article  Google Scholar 

  • Chatterjee T, Chakraborty S, Chowdhury R (2019) A critical review of surrogate assisted robust design optimization. Arch Comput Methods Eng 26:245–274

    Article  MathSciNet  Google Scholar 

  • Forrester A, Sãbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A. 5:12. https://doi.org/10.1098/rspa.2007.1900

    Article  Google Scholar 

  • Han Z, Zimmerman R, Grtz S (2012) Alternative cokriging method for variable-fidelity surrogate modeling. AIAA J 50:1205–1210

    Article  Google Scholar 

  • Han Z, Goertz S (2012) Hierarchical Kriging model for variable-fidelity surrogate modeling. AIAA J 50:1885–1896

    Article  Google Scholar 

  • Han Z, Xu C, Liang Z, Zhang Y, Song W (2020) Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids. Chin J Aeronaut 33:31–47

    Article  Google Scholar 

  • Hao P, Feng S, Zhang K, Li Z, Wang B, Li G (2018) Adaptive gradient-enhanced Kriging model for variable-stiffness composite panels using isogeometric analysis. Struct Multidiscip Optim 58:1–16

    Article  MathSciNet  Google Scholar 

  • Hao P, Feng S, Li Y, Wang B, Chen H (2020) Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02493-8

    Article  MathSciNet  Google Scholar 

  • Howarth RJ (1979) Mining geostatistics. Miner Mag 43(328):563–564. https://doi.org/10.1180/minmag.1979.043.328.34

    Article  Google Scholar 

  • Hu J, Zhou Q, Jiang P, Shao X, Xie T (2017) An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging. Eng Optim 50:145–163

    Article  Google Scholar 

  • Jiang C, Qiu H, Yang Z, Chen L, Gao L, Li P (2019) A general failure-pursuing sampling framework for surrogate-based reliability analysis. Reliab Eng Syst Saf 183:47–59

    Article  Google Scholar 

  • Jiang P, Xie T, Zhou Q, Shao X, Hu J, Cao L (2018) A space mapping method based on Gaussian process model for variable fidelity metamodeling. Simul Model Pract Theory 81:64–84

    Article  Google Scholar 

  • Jin SS, Kim ST, Park YH (2021) Combining point and distributed strain sensor for complementary data-fusion: a multi-fidelity approach (Accepted Manuscript). Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2021.107725

    Article  Google Scholar 

  • Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383

    Article  MathSciNet  Google Scholar 

  • Kleijnen J (2008) Response surface methodology for constrained simulation optimization: an overview. Simul Model Pract Theory 16:50–64

    Article  Google Scholar 

  • Krishna NK, Ganguli R (2021) Multi-fidelity analysis and uncertainty quantification of beam vibration using co-kriging interpolation method. Appl Math Comput. https://doi.org/10.1016/j.amc.2021.125987

    Article  MathSciNet  MATH  Google Scholar 

  • Lam R, Allaire DL, Willcox KE (2015) Multifidelity optimization using statistical surrogate modeling for non-hierarchical information sources. In: AIAA/ASCE/AHS/ASC structures, structural dynamics, & materials conference

  • Li X, Qiu H, Zheng J, Liang G, Shao X (2016) A VF-SLP framework using least squares hybrid scaling for RBDO. Struct Multidiscip Optim 55:1–12

    MathSciNet  Google Scholar 

  • Liu HT, Ong YS, Cai JF, Wang Y (2018) Cope with diverse data structures in multi-fidelity modeling: a Gaussian process method. Eng Appl Artif Intell 67:211–225

    Article  Google Scholar 

  • Liu Y, Collette M (2014) Improving surrogate-assisted variable fidelity multi-objective optimization using a clustering algorithm. Appl Soft Comput 24:482–493

    Article  Google Scholar 

  • Lophaven SN, Søndergaard J, Nielsen HB (2002) DACE A Matlab Kriging toolbox

  • Peng H, Shaojun F, Hao L, Yutian W, Bo W, Bin W (2021) A novel Nested Stochastic Kriging model for response noise quantification and reliability analysis. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2021.113941

    Article  MathSciNet  MATH  Google Scholar 

  • Priyanka R, Sivapragasam M (2021) Multi-fidelity surrogate model-based airfoil optimization at a transitional low Reynolds number. Sādhanā 46:1–19

    Article  MathSciNet  Google Scholar 

  • Rokita T, Friedmann PP (2018) Multifidelity coKriging for high-dimensional output functions with application to hypersonic airloads computation. AIAA J 56:3060–3070

    Article  Google Scholar 

  • Shi ML, Lv L, Sun W, Song X (2020) A multi-fidelity surrogate model based on support vector regression. Struct Multidiscip Optim 61:2363–2375

    Article  MathSciNet  Google Scholar 

  • Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39:2233–2241

    Article  Google Scholar 

  • Song X, Sun G, Li G, Gao W, Li Q (2013) Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidiscip Optim 47:221–231

    Article  MathSciNet  Google Scholar 

  • Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60:965–981

    Article  Google Scholar 

  • Sun S, Song B, Wang P, Dong H, Chen X (2020) Shape optimization of underwater wings with a new multi-fidelity bi-level strategy. Struct Multidiscip Optim 61:319–341

    Article  Google Scholar 

  • Tao S, Apley DW, Chen W, Garbo A, German BJ (2019) Input mapping for model calibration with application to wing aerodynamics. AIAA J 57:1–12

    Article  Google Scholar 

  • Tripathy M (2010) Power transformer differential protection using neural network principal component analysis and radial basis function neural network. Simul Model Pract Theory 18:600–611

    Article  Google Scholar 

  • Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9

    Article  Google Scholar 

  • Wang GG, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Des 129:415–426

    Article  Google Scholar 

  • Wauters J, Couckuyt I, Knudde N, Haene TD, Degroote J (2020) Multi-objective optimization of a wing fence on an unmanned aerial vehicle using surrogate-derived gradients. Struct Multidiscip Optim 61:353–364

    Article  MathSciNet  Google Scholar 

  • Wu Y, Lin Q, Zhou Q, Hu J, Wang S, Peng Y (2021) An adaptive space preselection method for the multi-fidelity global optimization. Aerosp Sci Technol. https://doi.org/10.1016/j.ast.2021.106728

    Article  Google Scholar 

  • Xia Q, Shi TL (2018) A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation. Compos Struct 188:209–219

    Article  Google Scholar 

  • Xiao M, Zhang G, Breitkopf P, Villon P, Pierre V, Zhang W (2018) Extended Co-Kriging interpolation method based on multi-fidelity data. Appl Math Comput 323:120–131

    MATH  Google Scholar 

  • Xing WW, Shah AA, Wang P, Fu S, Kirby R (2021) Residual Gaussian process: a tractable nonparametric Bayesian emulator for multi-fidelity simulations. Appl Math Intell 97:36–56

    MathSciNet  MATH  Google Scholar 

  • Yang Y, Wang Y, Liao Q, Pan J, Meng J, Huang H (2021) CNC corner milling parameters optimization based on variable-fidelity metamodel and improved MOPSO regarding energy consumption. Int J Precis Eng Manuf-Green Technol. https://doi.org/10.1007/s40684-021-00338-3

    Article  Google Scholar 

  • Zhang W, Feng F, Liu W, Yan S, Zhang QJ (2021a) Advanced parallel space-mapping-based multiphysics optimization for high-power microwave filters. In: IEEE transactions on microwave theory and techniques, pp 1–1

  • Zhang Y, Kim NH, Park C, Haftka RT (2017) Multi-fidelity surrogate based on single linear regression. AIAA J 56:4944–4952

    Article  Google Scholar 

  • Zhang Y, Dwight RP, Schmelzer M, Gómez J, Hickel S (2021b) Customized data-driven RANS closures for bi-fidelity LES–RANS optimization. J Comput Phys. https://doi.org/10.1016/j.jcp.2021.110153

    Article  MathSciNet  Google Scholar 

  • Zhou Q, Shao X, Jiang P, Zhou H, Cao L, Zhang L (2015) A deterministic robust optimisation method under interval uncertainty based on the reverse model. J Eng Des 26(10–12):416–444

    Article  Google Scholar 

  • Zhou Q, Shao X, Ping J, Gao Z, Wang C, Shu L (2016) An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models. Adv Eng Inform 30:283–297

    Article  Google Scholar 

  • Zhou Q, Ping J, Shao X, Hu J, Cao L, Li W (2017a) A variable fidelity information fusion method based on radial basis function. Adv Eng Inform 32:26–39

    Article  Google Scholar 

  • Zhou Q, Wang Y, Choi SK, Ping J, Hu J (2017b) A sequential multi-fidelity metamodeling approach for data regression. Knowl-Based Syst 134:199–212

    Article  Google Scholar 

  • Zhou Q, Wu J, Xue T, Jin P (2021) A two-stage adaptive multi-fidelity surrogate model-assisted multi-objective genetic algorithm for computationally expensive problems. Eng Comput 37:623–639

    Article  Google Scholar 

  • Zhu J, Wang Y, Collette M (2014) A multi-objective variable-fidelity optimization method for genetic algorithms. Eng Optim 46:521–542

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research has been supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 52175231, 51775203, 51805179, and 51721092, the China Postdoctoral Science Foundation under Grant No. 2020M682396, and the Research Funds of the Maritime Defense Technologies Innovation under Grant YT19201901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The main step for applying the validation framework has been presented in Sect. 3. To help readers understand better, the toolbox could be downloaded from the website: https://pan.baidu.com/s/1SDshG37cywz1Eu42niq51g by using the code cclq.

Additional information

Responsible Editor: Byeng D Youn

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The expressions of eight examples used in Subsect. 4.2 are listed.

Example 1

$$\begin{gathered} y^{H} = 2\sin \left( {{{\pi x} \mathord{\left/ {\vphantom {{\pi x} 5}} \right. \kern-\nulldelimiterspace} 5}} \right) y_{1}^{L} = {{x\left( {x - 5} \right)\left( {x - 12} \right)} \mathord{\left/ {\vphantom {{x\left( {x - 5} \right)\left( {x - 12} \right)} {30}}} \right. \kern-\nulldelimiterspace} {30}} y_{2}^{L} = {{\left( {x + 2} \right)\left( {x - 5} \right)\left( {x - 10} \right)} \mathord{\left/ {\vphantom {{\left( {x + 2} \right)\left( {x - 5} \right)\left( {x - 10} \right)} {30}}} \right. \kern-\nulldelimiterspace} {30}} 0 \le x \le 10 \end{gathered}$$

Example 2

$$\begin{gathered} y^{H} = 4x_{1}^{2} - 2.1x_{1}^{4} + {{x_{1}^{6} } \mathord{\left/ {\vphantom {{x_{1}^{6} } 3}} \right. \kern-\nulldelimiterspace} 3} + x_{1} x_{2} - 4x_{2}^{2} + 4x_{2}^{4} y_{1}^{L} = y^{H} \left( {0.7x_{1} ,0.7x_{2} } \right) + x_{1} x_{2} - 65 y_{2}^{L} = y^{H} \left( {0.8x_{1} ,0.6x_{2} } \right) + x_{1}^{4} + 32 x_{1} ,x_{2} \in \left[ { - 2,2} \right] \end{gathered}$$

Example 3

$$\begin{gathered} y^{H} = - \sin x_{1} - e^{{{{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {100}}} \right. \kern-\nulldelimiterspace} {100}}}} + 10 + {{x_{2}^{2} } \mathord{\left/ {\vphantom {{x_{2}^{2} } {10}}} \right. \kern-\nulldelimiterspace} {10}} y_{1}^{L} = - \sin \left( {0.9x_{1} } \right) - e^{{{{9x_{1} } \mathord{\left/ {\vphantom {{9x_{1} } {1000}}} \right. \kern-\nulldelimiterspace} {1000}}}} + 9.7 + {{x_{1}^{2} } \mathord{\left/ {\vphantom {{x_{1}^{2} } {10}}} \right. \kern-\nulldelimiterspace} {10}}0 + {{x_{2}^{2} } \mathord{\left/ {\vphantom {{x_{2}^{2} } {10}}} \right. \kern-\nulldelimiterspace} {10}} \hfill \\ y_{2}^{L} = - \sin x_{1} - e^{{{{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {100}}} \right. \kern-\nulldelimiterspace} {100}}}} + 10.3 + 0.03\left( {x_{1} - 0.3} \right){{^{2} + \left( {x_{2} - 1} \right)^{2} } \mathord{\left/ {\vphantom {{^{2} + \left( {x_{2} - 1} \right)^{2} } {10}}} \right. \kern-\nulldelimiterspace} {10}} y_{3}^{L} = - \sin \left( {0.9x_{1} } \right) - e^{{{{9x_{1} } \mathord{\left/ {\vphantom {{9x_{1} } {1000}}} \right. \kern-\nulldelimiterspace} {1000}}}} + 10 + 0.64{{x_{2}^{2} } \mathord{\left/ {\vphantom {{x_{2}^{2} } {10}}} \right. \kern-\nulldelimiterspace} {10}} x_{1} ,x_{2} ,x_{3} \in \left[ {0,1} \right] \end{gathered}$$

Example 4

$$\begin{gathered} y^{H} = {{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {2\left( {\sqrt {1 + \left( {x_{1} + x_{3}^{2} } \right){{x_{4} } \mathord{\left/ {\vphantom {{x_{4} } {x_{1}^{20} }}} \right. \kern-\nulldelimiterspace} {x_{1}^{20} }}} - 1} \right)}}} \right. \kern-\nulldelimiterspace} {2\left( {\sqrt {1 + \left( {x_{1} + x_{3}^{2} } \right){{x_{4} } \mathord{\left/ {\vphantom {{x_{4} } {x_{1}^{20} }}} \right. \kern-\nulldelimiterspace} {x_{1}^{20} }}} - 1} \right)}} + \left( {x_{1} + 3x_{4} } \right)e^{{\left( {1 + \sin x_{3} } \right)}} \hfill \\ y_{1}^{L} = 0.79\left( {1 + \sin {{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {10}}} \right. \kern-\nulldelimiterspace} {10}}} \right)y^{H} - 2x_{1} + x_{2}^{2} + x_{3}^{2} + 0.5 \hfill \\ y_{2}^{L} = y^{H} + e^{{{{x_{3} } \mathord{\left/ {\vphantom {{x_{3} } 2}} \right. \kern-\nulldelimiterspace} 2}}} - {{x_{1} } \mathord{\left/ {\vphantom {{x_{1} } {100}}} \right. \kern-\nulldelimiterspace} {100}} \hfill \\ x_{1} ,x_{2} ,x_{3} ,x_{4} \in \left[ {0.5,1} \right] \hfill \\ \end{gathered}$$

Example 5

$$\begin{gathered} y^{H} = \left( {x_{1} - 1} \right)^{2} + 2\left( {2x_{2}^{2} - x_{1} } \right)^{2} + 3\left( {3x_{3}^{2} - x_{2} } \right)^{2} + 4\left( {4x_{4}^{2} - x_{3} } \right) \hfill \\ y_{1}^{L} = \left( {x_{1} - 1} \right)^{2} + 2\left( {2x_{2}^{2} - 0.75x_{1} } \right)^{2} + 3\left( {3x_{3}^{2} - 0.75x_{2} } \right)^{2} + 4\left( {4x_{4}^{2} - 0.75x_{3} } \right)^{2} \hfill \\ y_{2}^{L} = \left( {x_{1} - 1} \right)^{2} + 2\left( {2x_{2}^{2} - 1.25x_{1} } \right)^{2} + 3\left( {3x_{3}^{2} - 1.25x_{2} } \right)^{2} + 4\left( {4x_{4}^{2} - 1.25x_{3} } \right)^{2} \hfill \\ y_{3}^{L} = \left( {x_{1} - 1} \right)^{2} + 2\left( {2.25x_{2}^{2} - x_{1} } \right)^{2} + 3\left( {3.25x_{3}^{2} - x_{2} } \right)^{2} + 4\left( {4.25x_{4}^{2} - x_{3} } \right)^{2} \hfill \\ x_{1} ,x_{2} ,x_{3} ,x_{4} \in \left[ { - 10,10} \right] \hfill \\ \end{gathered}$$

Example 6

$$\begin{gathered} y^{H} = [100\left( {x_{2} - x_{1}^{2} } \right)^{2} + \left( {x_{1} - 1} \right)^{2} + 100\left( {x_{3} - x_{2}^{2} } \right)^{2} + \left( {x_{2} - 1} \right)^{2} + 100\left( {x_{4} - x_{3}^{2} } \right)^{2} \hfill \\ \, {{ + \left( {x_{3} - 1} \right)^{2} + 100\left( {x_{5} - x_{4}^{2} } \right)^{2} + \left( {x_{4} - 1} \right)^{2} + 100\left( {x_{6} - x_{5}^{2} } \right)^{2} + \left( {x_{5} - 1} \right)^{2} ]} \mathord{\left/ {\vphantom {{ + \left( {x_{3} - 1} \right)^{2} + 100\left( {x_{5} - x_{4}^{2} } \right)^{2} + \left( {x_{4} - 1} \right)^{2} + 100\left( {x_{6} - x_{5}^{2} } \right)^{2} + \left( {x_{5} - 1} \right)^{2} ]} {100000}}} \right. \kern-\nulldelimiterspace} {100000}} \hfill \\ y_{1}^{L} = [100\left( {x_{2} - x_{1}^{2} } \right)^{2} + 4\left( {x_{1} - 1} \right)^{2} + 100\left( {x_{3} - x_{2}^{2} } \right)^{2} + 4\left( {x_{2} - 1} \right)^{2} + 100\left( {x_{4} - x_{3}^{2} } \right)^{2} \hfill \\ \, {{ \, + 4\left( {x_{3} - 1} \right)^{2} + 100\left( {x_{5} - x_{4}^{2} } \right)^{2} + 4\left( {x_{4} - 1} \right)^{2} + 100\left( {x_{6} - x_{5}^{2} } \right)^{2} + 4\left( {x_{5} - 1} \right)^{2} ]} \mathord{\left/ {\vphantom {{ \, + 4\left( {x_{3} - 1} \right)^{2} + 100\left( {x_{5} - x_{4}^{2} } \right)^{2} + 4\left( {x_{4} - 1} \right)^{2} + 100\left( {x_{6} - x_{5}^{2} } \right)^{2} + 4\left( {x_{5} - 1} \right)^{2} ]} {100000}}} \right. \kern-\nulldelimiterspace} {100000}} \hfill \\ y_{2}^{L} = [80\left( {x_{2} - x_{1}^{2} } \right)^{2} + \left( {x_{1} - 1} \right)^{2} + 80\left( {x_{3} - x_{2}^{2} } \right)^{2} + \left( {x_{2} - 1} \right)^{2} + 80\left( {x_{4} - x_{3}^{2} } \right)^{2} \hfill \\ \, {{ + \left( {x_{3} - 1} \right)^{2} + 80\left( {x_{5} - x_{4}^{2} } \right)^{2} + \left( {x_{4} - 1} \right)^{2} + 80\left( {x_{6} - x_{5}^{2} } \right)^{2} + \left( {x_{5} - 1} \right)^{2} ]} \mathord{\left/ {\vphantom {{ + \left( {x_{3} - 1} \right)^{2} + 80\left( {x_{5} - x_{4}^{2} } \right)^{2} + \left( {x_{4} - 1} \right)^{2} + 80\left( {x_{6} - x_{5}^{2} } \right)^{2} + \left( {x_{5} - 1} \right)^{2} ]} {100000}}} \right. \kern-\nulldelimiterspace} {100000}} \hfill \\ y_{3}^{L} = [100\left( {x_{2} - x_{1}^{2} } \right)^{2} + 100\left( {x_{3} - x_{2}^{2} } \right)^{2} + 100\left( {x_{4} - x_{3}^{2} } \right)^{2} + 100\left( {x_{5} - x_{4}^{2} } \right)^{2} \hfill \\ \, {{ + 100\left( {x_{6} - x_{5}^{2} } \right)^{2} ]} \mathord{\left/ {\vphantom {{ + 100\left( {x_{6} - x_{5}^{2} } \right)^{2} ]} {100000}}} \right. \kern-\nulldelimiterspace} {100000}} \hfill \\ x_{1} ,x_{2} ,x_{3} ,x_{4} ,x_{5} ,x_{6} \in \left[ { - 5,10} \right] \hfill \\ \end{gathered}$$

Example 7

$$\begin{gathered} y^{H} = \frac{{2\pi x_{3} \left( {x_{4} - x_{6} } \right)}}{{\ln \left( {{{x_{2} } \mathord{\left/ {\vphantom {{x_{2} } {x_{1} }}} \right. \kern-\nulldelimiterspace} {x_{1} }}} \right)\left[ {1 + {{2x_{7} x_{4} } \mathord{\left/ {\vphantom {{2x_{7} x_{4} } {\left( {\ln \left( {{{x_{2} } \mathord{\left/ {\vphantom {{x_{2} } {x_{1} }}} \right. \kern-\nulldelimiterspace} {x_{1} }}} \right)x_{1}^{2} x_{8} } \right) + {{x_{3} } \mathord{\left/ {\vphantom {{x_{3} } {x_{5} }}} \right. \kern-\nulldelimiterspace} {x_{5} }}}}} \right. \kern-\nulldelimiterspace} {\left( {\ln \left( {{{x_{2} } \mathord{\left/ {\vphantom {{x_{2} } {x_{1} }}} \right. \kern-\nulldelimiterspace} {x_{1} }}} \right)x_{1}^{2} x_{8} } \right) + {{x_{3} } \mathord{\left/ {\vphantom {{x_{3} } {x_{5} }}} \right. \kern-\nulldelimiterspace} {x_{5} }}}}} \right]}} \hfill \\ y_{1}^{L} = 0.4y^{H} + x_{1}^{2} x_{8} + {{x_{1} x_{7} } \mathord{\left/ {\vphantom {{x_{1} x_{7} } {x_{3} }}} \right. \kern-\nulldelimiterspace} {x_{3} }} + {{x_{1} x_{6} } \mathord{\left/ {\vphantom {{x_{1} x_{6} } {x_{2} }}} \right. \kern-\nulldelimiterspace} {x_{2} }} + x_{1}^{2} x_{4} \hfill \\ y_{2}^{L} = 0.6y^{H} + {{10x_{1} x_{5} } \mathord{\left/ {\vphantom {{10x_{1} x_{5} } {x_{2} }}} \right. \kern-\nulldelimiterspace} {x_{2} }} + {{x_{1} x_{8} } \mathord{\left/ {\vphantom {{x_{1} x_{8} } {x_{4} }}} \right. \kern-\nulldelimiterspace} {x_{4} }} + x_{1}^{3} x_{7} \hfill \\ x_{1} \in \left[ {0.05,0.15} \right];x_{2} \in \left[ {100,50000} \right];x_{3} \in \left[ {63070,115600} \right]; \hfill \\ x_{4} \in \left[ {990,1110} \right];x_{5} \in \left[ {63.1,116} \right];x_{6} \in \left[ {700,820} \right]; \hfill \\ x_{7} \in \left[ {1120,1680} \right];x_{8} \in \left[ {9855,12045} \right] \hfill \\ \end{gathered}$$

Example 8

$$\begin{gathered} y^{H} = \sum\limits_{i = 1}^{10} {x_{i}^{3} } + \left( {\sum\limits_{i = 1}^{10} {0.5ix_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{10} {0.5ix_{i} } } \right)^{4} \hfill \\ y_{1}^{L} = \sum\limits_{i = 1}^{10} {x_{i}^{3} } + \left( {\sum\limits_{i = 1}^{10} {2ix_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{10} {3ix_{i} } } \right)^{4} \hfill \\ y_{2}^{L} = \sum\limits_{i = 1}^{10} {x_{i}^{3} } + \left( {\sum\limits_{i = 1}^{10} {3ix_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{10} {4ix_{i} } } \right)^{4} \hfill \\ y_{3}^{L} = \sum\limits_{i = 1}^{10} {x_{i}^{3} } + \left( {\sum\limits_{i = 1}^{10} {ix_{i} } } \right)^{2} + \left( {\sum\limits_{i = 1}^{10} {2ix_{i} } } \right)^{4} \hfill \\ x_{i} \in \left[ { - 5,10} \right] \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Jiang, P., Hu, J. et al. A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data. Struct Multidisc Optim 64, 3797–3818 (2021). https://doi.org/10.1007/s00158-021-03055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03055-2

Keywords

Navigation