Skip to main content
Log in

Simultaneous parametric material and topology optimization with constrained material grading

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We consider the problem of parametric material and simultaneous topology optimization of an elastic continuum. To ensure existence of solutions to the proposed optimization problem and to enable the imposition of a deliberate maximal material grading, two approaches are adopted and combined. The first imposes pointwise bounds on design variable gradients, whilst the second applies a filtering technique based on a convolution product. For the topology optimization, the parametrized material is multiplied with a penalized continuous density variable. We suggest a finite element discretization of the problem and provide a proof of convergence for the finite element solutions to solutions of the continuous problem. The convergence proof also implies the absence of checkerboards. The concepts are demonstrated by means of numerical examples using a number of different material parametrizations and comparing the results to global lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The alternative would be to define \(\rho \in [\underline {\rho },\overline {\rho }]\) outside of Ω, which should be done by means of symmetries and translations of the known design values.

References

  • Adams RA (1975) Sobolev spaces. Academic Press, Boston

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, method and applications, 2nd edn. Springer Verlag

  • Bendsøe MP, Guedes JM, Haber RB, Pedersen P, Taylor JE (1994) An analytical model to predict optimal material properties in the context of optimal structural design. J Appl Mech 61:930–937

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Engrg 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Method Appl M 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland

  • Coelho P, Fernandes P, Guedes J, Rodrigues H (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Opt 35(2):107–115

    Article  Google Scholar 

  • Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Opt 47(4):583–597

    Article  MathSciNet  MATH  Google Scholar 

  • Gill P, Murray W, Saunders M (2005) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131

    Article  MathSciNet  MATH  Google Scholar 

  • Halpin JC (1992) Primer on composite materials analysis. Technomic Publishing AG, Lancaster

    Google Scholar 

  • Kecs W (1982) The convolution product and some applications. Ed. Acad., Bucuresti

  • Kočvara M, Stingl M, Zowe J (2008) Free material optimization: recent progress. Optimization 57:79–100

    Article  MathSciNet  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Methods Engrg 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425

    Article  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Engrg 41:1417–1434

    Article  MathSciNet  MATH  Google Scholar 

  • Ringertz U (1993) On finding the optimal distribution of material properties. Struct Multidiscip Opt 5:265–267

    Article  Google Scholar 

  • Rodrigues H, Guedes JM, Bendsøe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscip Opt 24:1–10

    Article  Google Scholar 

  • Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework. Comput Method Appl M 278:524–542

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (DFG) for funding this research work within Collaborative Research Centre 814, subproject C2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannis Greifenstein.

Appendix

Appendix

We use the definitions \( \rho \in L^{\infty }({\Omega }),\ \bigcup _{jk}{\Omega }_{jk}={\Omega }\) and \({\Pi }_{h}\rho |_{{\Omega }_{jk}}=\frac {1}{h^{2}}{\int }_{{\Omega }_{jk}}\rho (\boldsymbol {z})\,\text {dz} \). In order to show the weak-star convergence \({\Pi }_{h}\rho \overset {*}{\rightharpoonup } \rho \) in Ω, let gL 1(Ω) be arbitrary. Then

$$\begin{array}{@{}rcl@{}} \int\limits_{\Omega}({\Pi}_{h}\rho) g\,\text{dx} &=& \int\limits_{\Omega}\sum\limits_{j,k}\frac{1}{h^{2}}\int\limits_{{\Omega}_{jk}} \rho(\boldsymbol{z})\,\text{dz}\,\chi_{{\Omega}_{jk}}(\boldsymbol{x}) g(\boldsymbol{x})\,\text{dx} \\ &=& \sum\limits_{l,m}\int\limits_{{\Omega}_{lm}}\frac{1}{h^{2}}\sum\limits_{j,k}\int\limits_{{\Omega}_{jk}} \rho(\boldsymbol{z})\chi_{{\Omega}_{jk}}(\boldsymbol{x})g(\boldsymbol{x})\,\text{dz}\,\text{dx} \\ &=& \sum\limits_{j,k}\int\limits_{{\Omega}_{jk}}\sum\limits_{l,m}\frac{1}{h^{2}}\\&&\times\int\limits_{{\Omega}_{lm}} \chi_{{\Omega}_{jk}}(\boldsymbol{x})g(\boldsymbol{x})\,\text{dx}\,\rho(\boldsymbol{z})\,\text{dz} =: \Box \end{array} $$

and applying

$$\hspace*{2pt}\int\limits_{{\Omega}_{lm}}\chi_{{\Omega}_{jk}}(\boldsymbol{x})g(\boldsymbol{x})\,\text{dx} = \left\{\begin{array}{ll} 0 & {\Omega}_{jk}\neq{\Omega}_{lm},\\&\text{ i.e. }{\Omega}_{jk}\ni\boldsymbol{z}\not\in{\Omega}_{lm}, \\ {\int}_{{\Omega}_{lm}}g(\boldsymbol{x})\,\text{dx} &{\Omega}_{jk}={\Omega}_{lm},\\&\text{ i.e. }{\Omega}_{jk}\ni\boldsymbol{z}\in{\Omega}_{lm}, \end{array}\right. $$

we conclude

$$\begin{array}{@{}rcl@{}} \Box &=& \sum\limits_{j,k}\int\limits_{{\Omega}_{jk}}\sum\limits_{l,m}\frac{1}{h^{2}}\int\limits_{{\Omega}_{lm}} g(\boldsymbol{x})\,\text{dx}\,\chi_{{\Omega}_{lm}}(\boldsymbol{z})\rho(\boldsymbol{z})\,\text{dz} \\ &=& \sum\limits_{j,k}\int\limits_{{\Omega}_{jk}}({\Pi}_{h} g)(\boldsymbol{z})\rho(\boldsymbol{z})\,\text{dz} \\ &=& \int\limits_{\Omega}\rho {\Pi}_{h}g\,\text{dz} \overset{h\searrow 0}{\to}\int\limits_{\Omega} \rho g \,\text{dz}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greifenstein, J., Stingl, M. Simultaneous parametric material and topology optimization with constrained material grading. Struct Multidisc Optim 54, 985–998 (2016). https://doi.org/10.1007/s00158-016-1457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1457-7

Keywords

Navigation