Skip to main content
Log in

Optimal layout of multiple bi-modulus materials

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A modified solid isotropic material with penalization (SIMP) method is proposed for solving layout optimization problems of multiple bi-modulus materials in a continuum. In the present algorithm, each bi-modulus material is replaced by two distinct isotropic materials to avoid structural reanalysis for each update of the design domains. To reduce the error in local stiffness due to the material replacement, the modification factor of each finite element is calculated according to the local stress state and the moduli used in the previous structural analysis. Three numerical examples are considered to demonstrate the validity and applicability of the present approach. Numerical results show that the final layout of materials is determined by factors that include the moduli difference of each bi-modulus material and the difference among material moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Optim 12(1):63–74

    Article  Google Scholar 

  • Alfieri L, Bassi D, Biondini F, Malerba PG (2007) Morphologic evolutionary structural optimization. 7th world congress on structural and multidisciplinary optimization Seoul, Korea, paper A

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Dapogny C, Delgado G, Michailidis G (2014) Multi-phase structural optimization via a level set method. Esaim Control Optim Calculus Var 20(2):576–611

    Article  MathSciNet  MATH  Google Scholar 

  • Ambartsumyan S (1965) The axisymmetric problem of circular cylindrical shell made of materials with different stiffness in tension and compression. Izvestiya Akademiya Nauk SSSR. Mekhanika 4: 77-85

  • Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61(5):498–513

    Article  MathSciNet  MATH  Google Scholar 

  • Ansys (2013) Ansys. Ansys. http://www.ansyscom, 2013. Assessed April 2015

  • Baratta A, Corbi I, Corbi O (2015) Analytical formulation of generalized incremental theorems for 2D no-tension solids. Acta Mech. doi:10.1007/s00707-015-1350-2

    MathSciNet  MATH  Google Scholar 

  • Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe, United States of America

    MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer Science & Business Media

  • Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289

    Article  Google Scholar 

  • Bruggi M (2014) Finite element analysis of no-tension structures as a topology optimization problem. Struct Multidiscip Optim 50(6):957–973

    Article  MathSciNet  Google Scholar 

  • Bruggi M, Duysinx P (2013) A stress-based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326

    Article  MathSciNet  Google Scholar 

  • Cai K (2011) A simple approach to find optimal topology of a continuum with tension-only or compression-only material. Struct Multidiscip Optim 43(6):827–835

    Article  Google Scholar 

  • Cai K, Qin QH (2012) A new construction method for a lightweight submerged radial gate. Front Eng Mech Res 1(1):1–7

    MathSciNet  Google Scholar 

  • Cai K, Qin QH, Luo Z, Zhang A (2013) Robust topology optimisation of bi-modulus structures. Comput Aided Des 45(10):1159–1169

    Article  Google Scholar 

  • Cai K, Gao DY, Qin QH (2014a) Postbuckling analysis of a nonlinear beam with axial functionally graded material. J Eng Math 88:121–136

    Article  MathSciNet  Google Scholar 

  • Cai K, Gao DY, Qin QH (2014b) Postbuckling solutions of hyper-elastic beam by canonical dual finite element method. Math Mech Solids 19(6):659–671

    Article  MathSciNet  MATH  Google Scholar 

  • Cai K, Gao Z, Shi J (2014c) Topology optimization of continuum structures with bi-modulus materials. Eng Optim 46(2):244–260

    Article  MathSciNet  Google Scholar 

  • Cai K, Luo ZJ, Qin QH (2014d) Topology optimization of bi-modulus structures using the concept of bone remodeling. Eng Comput 31(7):1361–1378

    Article  Google Scholar 

  • Chang C, Zheng B, Gea H (2007) Topology optimization for tension/compression only design. Proceedings of the 7th world congress on structural and multidisciplinary optimization. pp 2488–2495

  • Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Struct Multidiscip Optim 41(2):163–177

    Article  MathSciNet  MATH  Google Scholar 

  • Dorn WS (1964) Automatic design of optimal structures. J Mecanique 3:25–52

    Google Scholar 

  • Du Z, Guo X (2014) Variational principles and the related bounding theorems for bi-modulus materials. J Mech Phys Solids 73:183–211

    Article  MathSciNet  Google Scholar 

  • Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317(3):557–575

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4): 331–390

  • Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MathSciNet  MATH  Google Scholar 

  • Guan H, Steven G, Xie M (1999) Evolutionary structural optimisation incorporating tension and compression materials. Adv Struct Eng 2:273–288

    Google Scholar 

  • Guo X, Zhang W, Zhong W (2014a) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014b) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Han S-Y, Lee S-K (2005) Development of a material mixing method based on evolutionary structural optimization. JSME Int J Ser A 48(3):132–135

    Article  MathSciNet  Google Scholar 

  • Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley

  • Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825

    Article  MATH  Google Scholar 

  • Jones RM (1977) Stress-strain relations for materials with different moduli in tension and compression. AIAA J 15(1):16–23

    Article  Google Scholar 

  • Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press

  • Liu S, Qiao H (2011) Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design. Struct Multidiscip Optim 43(3):369–380

    Article  MathSciNet  Google Scholar 

  • Liu Y, Xie Z, Van Humbeeck J, Delaey L (1998) Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Mater 46(12):4325–4338

    Article  Google Scholar 

  • Luo Z, Tong L, Ma H (2009) Shape and topology optimization for electrothermomechanical microactuators using level set methods. J Comput Phys 228(9):3173–3181

    Article  MathSciNet  MATH  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81(8):813–824

    Article  Google Scholar 

  • Mei Y, Wang X (2004) A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech Sinica 20(5):507–518

    Article  MathSciNet  Google Scholar 

  • Mosler J, Cirak F (2009) A variational formulation for finite deformation wrinkling analysis of inelastic membranes. Comput Methods Appl Mech Eng 198(27):2087–2098

    Article  MATH  Google Scholar 

  • Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327

    Article  MathSciNet  Google Scholar 

  • Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288

    Article  MathSciNet  MATH  Google Scholar 

  • Qin QH (2000) The Trefftz finite and boundary element method. WIT PRESS, Southampton

    MATH  Google Scholar 

  • Qin QH (2005) Trefftz finite element method and its applications. Appl Mech Rev 58(5):316–337

    Article  Google Scholar 

  • Qin QH, Ye JQ (2004) Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads. Int J Solids Struct 41(9):2447–2460

    Article  MATH  Google Scholar 

  • Qin QH, Qu C, Ye JQ (2005) Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads. Biomaterials 26 (33): 6798--6810

  • Querin OM, Victoria M, Martí P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42(1):25–32

    Article  Google Scholar 

  • Ramani A (2010) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41(6):913–934

    Article  Google Scholar 

  • Roddeman D, Drukker J, Oomens C, Janssen J (1987) The wrinkling of thin membranes: part I—theory. J Appl Mech 54(4):884–887

    Article  MATH  Google Scholar 

  • Rodriguez-Velazquez J, Seireg A (1985) Optimizing the shapes of structures via a rule-based computer program. Comput Mech Eng 4(1):20–28

    Google Scholar 

  • Rozvany G, Bendsoe M, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48(2):41–119

    Article  Google Scholar 

  • Seldin EJ (1966) Stress-strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4(2):177–191

    Article  Google Scholar 

  • Shi J, Cai K, Qin QH (2014) Optimal mass distribution prediction for human proximal femur with bi-modulus property. Mol Cell Biomech 11(4):235–248

    Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Torquato S (1999) Design of smart composite materials using topology optimization. Smart Mater Struct 8(3):365

    Article  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027

    Article  MATH  Google Scholar 

  • Stimpson B, Chen R (1993) Measurement of rock elastic moduli in tension and in compression and its practical significance. Can Geotech J 30(2):338–347

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Zhou S (2004) Synthesis of shape and topology of multi-material structures with a phase-field method. J Computer-Aided Mater Des 11(2–3):117–138

    Article  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586

    Article  MathSciNet  Google Scholar 

  • Xiao Y, Qin QH (2013) Cell based full field displacement calculation for foam material. Proc SIF 2013

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Xie YM, Steven GP (1997) Basic evolutionary structural optimization. Springer

  • Yang Y, Moen CD, Guest JK (2015) Three-dimensional force flow paths and reinforcement design in concrete via stress-dependent truss-continuum topology optimization. J Eng Mech 141(1):04014106

    Article  Google Scholar 

  • Zenkert D, Burman M (2009) Tension, compression and shear fatigue of a closed cell polymer foam. Compos Sci Technol 69(6):785–792

    Article  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1):309–336

    Article  Google Scholar 

  • Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu L, Zhao H, Song Y (2006) Experimental investigation of the mechanical properties of Takin femoral cortical bone. J Tsinghua Univ 46(2):301

    Google Scholar 

  • Zhuang C, Xiong Z, Ding H (2007) A level set method for topology optimization of heat conduction problem under multiple load cases. Comput Methods Appl Mech Eng 196(4):1074–1084

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuang C, Xiong Z, Ding H (2010) Topology optimization of multi-material for the heat conduction problem based on the level set method. Eng Optim 42(9):811–831

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural-Science-Foundation of China (Nos. 51279171 and 11372100) and Australian Research Council (No. DP140103137) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing H. Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Cao, J., Shi, J. et al. Optimal layout of multiple bi-modulus materials. Struct Multidisc Optim 53, 801–811 (2016). https://doi.org/10.1007/s00158-015-1365-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1365-2

Keywords

Navigation