Skip to main content
Log in

Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Surrogate models or metamodels are commonly used to exploit expensive computational simulations within a design optimization framework. The application of multi-fidelity surrogate modeling approaches has recently been gaining ground due to the potential for further reductions in simulation effort over single fidelity approaches. However, given a black box problem when exactly should a designer select a multi-fidelity approach over a single fidelity approach and vice versa? Using a series of analytical test functions and engineering design examples from the literature, the following paper illustrates the potential pitfalls of choosing one technique over the other without a careful consideration of the optimization problem at hand. These examples are then used to define and validate a set of guidelines for the creation of a multi-fidelity Kriging model. The resulting guidelines state that the different fidelity functions should be well correlated, that the amount of low fidelity data in the model should be greater than the amount of high fidelity data and that more than 10 % and less than 80 % of the total simulation budget should be spent on low fidelity simulations in order for the resulting multi-fidelity model to perform better than the equivalent costing high fidelity model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Notes

  1. The sampling plan data for this calculation has been kindly provided by Brooks, Forrester, Keane and Shahpar

References

  • Bettebghor D, Blondeau C, Toal DJ, Eres H (2013) Bi-objective optimization of pylon-engine-nacelle assembly: Weight vs. tip clearnce criterion. Struct Multidiscip Optim 48(3):637–652

    Article  Google Scholar 

  • Brooks C, Forrester A, Keane A, Shahpar S (2011) Multi-fidelity design optimisation of a transonic compressor rotor. In: 9th European Turbomachinery Conference, Istanbul, Turkey, 21st-25th March

  • Forrester A (2010) Black-box calibration for complex systems simulation. Phil Trans R Soc A 368(1924). doi:10.1098/rsta.2010.0051

  • Forrester A, Keane A (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1-3):50–79. doi:10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  • Forrester A, Sóbester A, Keane A (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A 463(2088):3251–3269. doi:10.1098/rspa.2007.1900

    Article  MATH  Google Scholar 

  • Forrester A, Sóbester A, Keane A (2008) Engineering Design via Surrogate Modelling. Wiley-Blackwell

  • Ghoreyshi M, Badcock K, Woodgate M (2009) Accelerating the numerical generation of aerodynamic models for flight simulation. J Aircr 46(3):972–980. doi:10.2514/1.39626

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization & machine learning. Addison-Wesley

  • Han Z, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J 50(9):1885–1896

    Article  Google Scholar 

  • Han Z, Görtz S, Zimmermann R (2013) Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalised hybrid bridge function. Aerosp Sci Technol 25(1):177–189

    Article  Google Scholar 

  • Han Z, Zimmermann R, Görtz S (2012) Alternative cokriging model for variable-fidelity surrogate modeling. AIAA J 50(5):1205–1210

    Article  Google Scholar 

  • Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21(4):345–383. doi:10.1023/A:1012771025575

    Article  MATH  Google Scholar 

  • Jones D, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492. doi:10.1023/A:1008306431147

    Article  MATH  MathSciNet  Google Scholar 

  • Kennedy M, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13. doi:10.1093/biomet/87.1.1

    Article  MATH  MathSciNet  Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MATH  MathSciNet  Google Scholar 

  • Krige D (1951) A statistical approach to some basic mine valuation problems on the witwatersrand. J Chem Metallurigical Min Eng Soc South Affrica 52(6):119–139. doi:10.2307/3006914

    Google Scholar 

  • Kuya Y, Takeda K, Zhang X, Forrester A (2011) Multifidelity surrogate modeling of experimental and computational aerodynamic data sets. AIAA J 49(2):289–298. doi:10.2514/1.53410

    Article  Google Scholar 

  • Lapworth B, Shahpar S (2004) Design of gas turbine engines using cfd. In: ECCOMAS

  • Queipo N, Haftka R, Shyy W, Goel T, Vaidyanathan R, Tucker P (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41:1–28. doi:10.1016/j.paerosci.2005.02.001

    Article  Google Scholar 

  • Reid L, Moore R (1978) Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced, High-Pressure-Ratio Core Compressor. NASA TP-1337

  • Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435. doi:10.2307/2245858

    Article  MATH  MathSciNet  Google Scholar 

  • Simpson T, Peplinski J, Kock P, Allen J (2001) Metamodels for computer-based engineering design: Survey and recommendations. Eng Comput 17(2):129–150. doi:10.1007/PL00007198

    Article  MATH  Google Scholar 

  • Toal D, Bressloff N, Keane A, Holden C (2011) The development of a hybridized particle swarm for kriging hyperparameter tuning. Eng Optim 43(6):675–699. doi:10.1080/0305215X.2010.508524

    Article  Google Scholar 

  • Toal D, Keane A (2011) Efficient multi-point aerodynamic design optimization via co-kriging. J Aircr 48(5):1685–1695. doi:10.2514/1.C031342

    Article  Google Scholar 

  • Wankhede M, Bressloff N, Keane A (2011) Combustor design optimisation using co-kriging of steady and unsteady turbulent combustion. In: Proceedings of ASME Turbo Expo 2011

  • Yamazaki W, Mavriplis D (2013) derivative-enhanced variable fidelity surrogate modeling for aerodynamic functions. AIAA J 51:126–137

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 234344 (www.crescendo-fp7.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. J. Toal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toal, D.J.J. Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidisc Optim 51, 1223–1245 (2015). https://doi.org/10.1007/s00158-014-1209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1209-5

Keywords

Navigation