Skip to main content
Log in

Eigenvalue topology optimization of structures using a parameterized level set method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Preventing a structure from resonance is important in many real-world applications. Because an external excitation frequency can be lower than the fundamental eigenfrequency or between the eigenfrequencies of a structure, there is a strong need for eigenfrequency optimization technology to optimize the fundamental eigenfrequency and, in addition, the k-th eigenfrequency and to maximize the gap between eigenfrequencies. However, previous optimization studies on vibrating elastic structures that used the level set method have been devoted to the optimization of the fundamental eigenfrequency, whereas the higher-order eigenfrequencies optimization problem has seldom been considered. This paper presents an eigenfrequency optimization technology that is based on the compactly supported radial basis functions (CS-RBFs) parameterized level-set method, using the fundamental eigenfrequency, the eigenfrequency of a given higher-order, and the gap between two consecutive eigenfrequencies as the optimization objectives. Furthermore, to address the oscillation problem of the objective function, we adopt an exponential weighted optimization model of a number of the lower eigenfrequencies for multiple eigenvalue optimizations, and we utilize mode-tracking technology for the single eigenvalue optimization.In addition, we further extend the CS-RBFs parameterized level-set method to an optimization that is performed with geometric constraints, which means that the size and position of the regular holes in the structure can be optimized with the shape and topology. This approach is useful in real-world applications. The effectiveness of this method is demonstrated by several widely investigated examples that have various objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allaire G (2001) Shape optimization by the homogenization method. Springer, New York

    Google Scholar 

  • Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Method Appl Mech Eng 194(14):3269–3290

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, De Gournay F, Jouve F, Toader A (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59

    MathSciNet  MATH  Google Scholar 

  • Allemang RJ (2003) The modal assurance criterion–twenty years of use and abuse. Sound Vib 37(8):14–23

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MathSciNet  MATH  Google Scholar 

  • Chen JQ, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Method Eng 71(3):313–346

    Article  MathSciNet  MATH  Google Scholar 

  • Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Method Eng 35(7):1487–1502

    Article  MATH  Google Scholar 

  • Du JB, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Gournay DF (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45(1):343–367

    Article  MathSciNet  MATH  Google Scholar 

  • Kim TS, Kim YY (2000) Mac-based mode-tracking in structural topology optimization. Comput Struct 74(3):375–383

    Article  Google Scholar 

  • Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70(1):47–61

    Article  MathSciNet  MATH  Google Scholar 

  • Liu X, Xiao Q, Karihaloo B (2004) XFEM for direct evaluation of mixed mode SIFs in homogeneous and bimaterials. Int J Numer Method Eng 59(8):1103–1118

    Article  MATH  Google Scholar 

  • Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Method Eng 76(6):862–892

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z, Yang J, Chen L-P, Zhang Y-Q, Abdel-Malek K (2006) A new hybrid fuzzy-goal programming scheme for multi-objective topological optimization of static and dynamic structures under multiple loading conditions. Struct Multidiscip Optim 31(1):26–39

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z, Wang MY, Wang S, Wei P (2008) A level setbased parameterization method for structural shape and topology optimization. Int J Numer Method Eng 76(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z, Tong L, Ma H (2009) Shape and topology optimization for electrothermomechanical microactuators using level set methods. J Comput Phys 228(9):3173–3181

    Article  MathSciNet  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Method Appl Mech Eng 121(1):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Ma ZD, Kikuchi N, Hagiwara I (1993) Structural topology and shape optimization for a frequency response problem. Comput Mech 13(3):157–174

    Article  MathSciNet  MATH  Google Scholar 

  • Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Method Eng 67(5):597–628

    Article  MathSciNet  MATH  Google Scholar 

  • Meske R, Lauber B, Schnack E (2006) A new optimality criteria method for shape optimization of natural frequency problems. Struct Multidiscip Optim 31(4):295–310

    Article  MathSciNet  MATH  Google Scholar 

  • Neves M, Rodrigues H, Guedes J (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10(2):71–78

    Article  Google Scholar 

  • Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1(1):11–17

    Article  Google Scholar 

  • Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Rozvany GI (1992) Shape and layout optimization of structural systems and optimality criteria methods. Springer, New York

    Book  MATH  Google Scholar 

  • Rozvany GI, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48(2):41–119

    Article  Google Scholar 

  • Rvachev V (1982) Theory of R-functions and some applications. Kiev, Naukova Dumka

    MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Seyranian AP (1993) Sensitivity analysis of multiple eigenvalues. Mech Struct Mach 21(2):261–284

    Article  MathSciNet  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2005) The method of moving asymptotes—a new method for structural optimization. Int J Numer Method Eng 24(2):359–373

    Article  MathSciNet  Google Scholar 

  • Tenek LH, Hagiwara I (1993) Static and vibrational shape and topology optimization using homogenization and mathematical programming. Comput Method Appl Mech Eng 109(1):143–154

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X (2004a) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Method Appl Mech Eng 193(6):469–496

    Article  MATH  Google Scholar 

  • Wang MY, Wang X (2004b) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. CMES: Comput Model Eng Sci 6(4):373–396

    MATH  Google Scholar 

  • Wang S, Wang MY (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Method Eng 65(11):1892–1922

    Article  MATH  Google Scholar 

  • Wang S, Wang MY (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Method Eng 65(12):2060–2090

    Article  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Method Appl Mech Eng 192(1):227–246

    Article  MATH  Google Scholar 

  • Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput-Aid Des 42(8):708–719

    Article  Google Scholar 

  • Xia Q, Shi T, Wang MY (2011) A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Struct Multidiscip Optim 43(4):473–485

    Article  MathSciNet  MATH  Google Scholar 

  • Xie YM, Steven GP (1994) A simple approach to structural frequency optimization. Comput Struct 53(6):1487–1491

    Article  Google Scholar 

  • Xie YM, Steven GP (1997) Basic evolutionary structural optimization. Springer, London

    Book  Google Scholar 

Download references

Acknowledgments

This research is sponsored in part by the Natural Science Foundation of China (Grants: 50975107), the National Natural Science Foundation of China (Grant: 51175197), the National Key Technologies R & D Program of China (Grants: 2010ZX04001-032), and also by the Guangdong Province High-Tech Zone Development Guiding Program (Grants: 081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, B., Wang, S. et al. Eigenvalue topology optimization of structures using a parameterized level set method. Struct Multidisc Optim 50, 573–591 (2014). https://doi.org/10.1007/s00158-014-1069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1069-z

Keywords

Navigation