Skip to main content
Log in

Design multiple-layer gradient coils using least-squares finite element method

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The design of gradient coils for magnetic resonance imaging is an optimization task in which a specified distribution of the magnetic field inside a region of interest is generated by choosing an optimal distribution of a current density geometrically restricted to specified non-intersecting design surfaces, thereby defining the preferred coil conductor shapes. Instead of boundary integral type methods, which are widely used to design coils, this paper proposes an optimization method for designing multiple layer gradient coils based on a finite element discretization. The topology of the gradient coil is expressed by a scalar stream function. The distribution of the magnetic field inside the computational domain is calculated using the least-squares finite element method. The first-order sensitivity of the objective function is calculated using an adjoint equation method. The numerical operations needed, in order to obtain an effective optimization procedure, are discussed in detail. In order to illustrate the benefit of the proposed optimization method, example gradient coils located on multiple surfaces are computed and characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamiak K, Rutt B, Dabrowski W (1992) Design of gradient coils for magnetic-resonance-imaging. IEEE Trans Magn 28(5):2403–2405

    Article  Google Scholar 

  • Bergström R (2002) Adaptive finite element methods for div-curl problems. PhD thesis, Chalmers University of Technology

  • Bochev PB, Gunzburger MD (2009) Least-squares finite element methods. Springer, New York

    MATH  Google Scholar 

  • Bowtell R, Robyr P (1998) Multilayer gradient coil design. J Magn Reson 131:286–294

    Article  Google Scholar 

  • Carlson JW, Derby KA, Hawryszko KC, Weideman M (1992) Design and evaluation of shielded gradient coils. Magn Reson Med 26(2):191–206

    Article  Google Scholar 

  • Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887:cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans Math Softw 35:3

    Article  MathSciNet  Google Scholar 

  • Chronik BA, Rutt BK (1998) Constrained length minimum inductance gradient coil design. Magn Reson Med 39(2):270–278

    Article  Google Scholar 

  • Davis TA, Hager WW (2005) Row modifications of a sparse cholesky factorization. SIAM J Matrix Anal Appl 26:621–639

    Article  MATH  MathSciNet  Google Scholar 

  • Du YP, Parker DL (1998) Optimal design of gradient coils in mr imaging:optimizing coil performance versus minimizing cost functions. Magn Reson Med 40(3):500–503

    Article  Google Scholar 

  • Ern A, Guermond JL (2004) Theory and practice of finite elements. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Forbes LK, Crozier S (2004) Novel target-field method for designing shielded biplanar shim and gradient coils. IEEE Trans Magn 40:1929–1938

    Article  Google Scholar 

  • Forbes LK, Brideson MA, Crozier S (2005) A target-field method to design circular biplanar coils for asymmetric shim and gradient fields. IEEE Trans Magn 41:2134–2144

    Article  Google Scholar 

  • Gill PE, Murray W, Wright MH (1982) Practical optimization. Academic Press Inc, London

    Google Scholar 

  • Gross PW, Kotiuga PR (2004) Electromagnetic theory and computation:a topological approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hidalgo-Tobon S (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson A 36A(4):223–242

    Article  Google Scholar 

  • Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  • Jia F, Liu Z, Korvink JG (2011) A novel coil design method for manufacturable configurations at optimal performance In: Proceedings ISMRM, vol 19, p 3780

  • Jiang B (1998) The least squares finite element method: theory and applications in computational fluid dynamics and electromagnetics. Springer-Verlag, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Jin JM (2002) The finite element method in electromagnetics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Karypis G, Kumar V (1998) Multilevel k-way partitioning scheme for irregular graphs. J Parallel Distrib Comput 48:96–129

    Article  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191

    Article  Google Scholar 

  • Leggett J, Crozier S, Blackband S, Beck B, Bowtell RW (2003) Multilayer transverse gradient coil design. Concepts Magn Reson B 16:38–46

    Article  Google Scholar 

  • Lemdiasov RA, Ludwig R (2005) A stream function method for gradient coil design. Concepts Magn Reson B 26B(1):67–80

    Article  Google Scholar 

  • Liu W, Zu D, Tang X, Guo H (2007) Target-field method for mri biplanar gradient coil design. J Phys D Appl Phys 40:4418– 4424

    Article  Google Scholar 

  • Lopez HS, Poole M, Crozier S (2009) An improved equivalent magnetization current method applied to the design of local breast gradient coils. J Magn Reson 199:48–55

    Article  Google Scholar 

  • Mansfield P, Chapman B (1986) Active magnetic screening of gradient coils in nmr imaging. J Magn Reson 66(3):573–576

    Google Scholar 

  • Marin L, Power H, Bowtell RW, Sanchez CC, Becker AA, Glover P, Jones A (2008) Boundary element method for an inverse problem in magnetic resonance imaging gradient coils. CMES-Comp Model Eng Sci 23:149–173

    MATH  Google Scholar 

  • Marinus VT, Jacques BA (2010) Magnetic resonance imaging theory and practice, 3rd edn. Springer, Berlin Heidelberg

    Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer Science + Business Media Inc

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier-stokes flow. Int J Numer Meth Eng 65:975–1001

    Article  MATH  MathSciNet  Google Scholar 

  • Peeren GN (2003) Stream function approach for determining optimal surface currents. J Comput Phys 191:305–321

    Article  MATH  MathSciNet  Google Scholar 

  • Pissanetzky S (1992) Minimum energy mri gradient coils of general geometry. Meas Sci Technol 3:567–673

    Article  Google Scholar 

  • Poole M, Bowtell R (2007) Novel gradient coils designed using a boundary element method. Concepts Magn Reson B 31B:162–175

    Article  Google Scholar 

  • Poole M, Weiss P, Lopez HS, Ng M, Crozier S (2010) Minimax current density coil design. J Phys D Appl Phys 43:095001

    Article  Google Scholar 

  • Roemer PB, Hickey JS (1988) Self-shielded gradient coils for nuclear magnetic resonance imaging. US 4737716 A

  • Shi F, Ludwig R (1998) Magnetic resonance imaging gradient coil design by combining optimization techniques with the finite element method. IEEE Trans Magn 34:671–683

    Article  Google Scholar 

  • Shvartsman S, Steckner MC (2007) Discrete design method of transverse gradient coils for mri. Concepts Magn Reson Part B Magn Reson Eng 31B(2):95–115

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization:a survey on procedures dealing with checkerboards, mesh-dependencies and local minimal. Struct Optim 16:68–75

    Article  Google Scholar 

  • Turner R (1986) A target field approach to optimal coil design. J Phys D Appl Phys 19:147–151

    Article  Google Scholar 

  • Turner R (1988) Minimum inductance coils. J Phys E Sci Instrum 21:948–952

    Article  Google Scholar 

  • Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11:903–920

    Article  Google Scholar 

  • Ungersma SE, Xu H, Chronik BA, Scott GC, Macovski A, Conolly SM (2004) Shim design using a linear programming algorithm. Magn Reson Med 52:619627

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by German Federal Ministry of Education and Research (BMBF) INUMAC grant 13N9208, an operating grant of the University of Freiburg, and the National Nature Science Foundation of China (No. 51275504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, F., Liu, Z., Zaitsev, M. et al. Design multiple-layer gradient coils using least-squares finite element method. Struct Multidisc Optim 49, 523–535 (2014). https://doi.org/10.1007/s00158-013-0992-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0992-8

Keywords

Navigation