Skip to main content
Log in

A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Design optimization is presented for the crashworthiness improvement of an automotive body structure. The optimization objective was to improve automotive crashworthiness conditions according to the defined criterion (occupant chest deceleration) during a full frontal impact. The controllable factors used in this study consisted of six internal parts of the vehicle’s frontal structure in a condition that their thickness was the “design parameter”. First using the Taguchi method, this study analyzed the optimum conditions in discontinuous design area and impact factors and their optimal levels of design objectives were obtained by analyzing the experimental results. Next to model a precise understanding of the explicit mathematical input–output relationship, fuzzy logic is utilized which make use of full factorial design set of experimental test cases resulted from Taguchi predicting formulations. Interestingly, the optimum conditions for automotive crashworthiness occurred with 2.72 % improvement in the defined crashworthiness criterion in comparison with the baseline design while selected structural parts experienced mass reduction by 8.23 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbasi M, Kazemi R, Ghafari Nazari A (2011) Using a parametric method for investigating automotive crashworthiness. Int J Automot Eng 1(3):165–172

    Google Scholar 

  • Agatonovic-Kustrin S, Wu V, Rades T, Saville D, Tucker I (2000) Ranitidine hydrochloride X-ray assay using a neural network. J Pharm Biomed Anal 22(6):985–992

    Article  Google Scholar 

  • Avalle M, Chiandussi G, Belingardi G (2002) Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Struct Multidiscip Optim 24(4):325–332

    Article  Google Scholar 

  • Baseri H, Rabiee S, Moztarzadeh F, Solati-Hashjin M (2010) Mechanical strength and setting times estimation of hydroxyapatite cement by using neural network. Mater Des 31(5):2585–2591

    Article  Google Scholar 

  • Çelik S, Tan Ö (2005) Determination of preconsolidation pressure with artificial neural network. Civ Eng Environ Syst 22(4):217–231

    Article  Google Scholar 

  • Deb A, Mahendrakumar M, Chavan C, Karve J, Blankenburg D, Storen S (2004) Design of an aluminium-based vehicle platform for front impact safety. Int J Impact Eng 30(8–9):1055–1079

    Article  Google Scholar 

  • Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidiscip Optim 35(4):375–389

    Article  Google Scholar 

  • Eskandarian A, Marzougui D, Bedewi NE (1997) Finite element model and validation of a surrogate crash test vehicle for impacts with roadside objects. Int J Crashworthiness 2(3):239–258

    Article  Google Scholar 

  • Etman L, Adriaens J, Van Slagmaat M, Schoofs A (1996) Crash worthiness design optimization using multipoint sequential linear programming. Struct Multidiscip Optim 12(4):222–228

    Article  Google Scholar 

  • Fang H, Rais-Rohani M, Liu Z, Horstemeyer MF (2005) A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput Struct 83(25–26):2121–2136

    Article  Google Scholar 

  • Huang M (2002) Vehicle crash mechanics. CRC

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Kang G, Lee W, Sugeno M (1998) Design of TSK fuzzy controller based on TSK fuzzy model using pole placement. IEEE 241:246–251

    Google Scholar 

  • Kodiyalam S, Yang R, Gu L, Tho CH (2004) Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment. Struct Multidiscip Optim 26(3):256–263

    Article  Google Scholar 

  • Kurtaran H, Eskandarian A, Marzougui D, Bedewi N (2002) Crashworthiness design optimization using successive response surface approximations. Comput Mech 29(4):409–421

    Article  MATH  Google Scholar 

  • Mamdani EH (1976) Advances in the linguistic synthesis of fuzzy controllers. Int J Man–Mach Stud 8(6):669–678

    Article  MATH  Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man–Machi Stud 7(1):1–13

    Article  MATH  Google Scholar 

  • Marklund PO, Nilsson L (2001) Optimization of a car body component subjected to side impact. Struct Multidiscip Optim 21(5):383–392

    Article  Google Scholar 

  • Pan F, Zhu P (2011) Design optimisation of vehicle roof structures: benefits of using multiple surrogates. Int J Crashworthiness 16(1):85–95

    Article  MathSciNet  Google Scholar 

  • Roy R (1990) A primer on the Taguchi method, competitive manufacturing series. New York, pp 7–80

  • Shi L, Yang R, Zhu P (2012) A method for selecting surrogate models in crashworthiness optimization. Struct Multidiscip Optim 46(2):159–170

    Article  MathSciNet  Google Scholar 

  • Sinha K (2007) Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Struct Multidiscip Optim 33(3):255–268

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J, Kodiyalam S, Yang R (2001) Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash. Struct Multidiscip Optim 22(4):295–306

    Article  Google Scholar 

  • Stander N, Roux W, Giger M, Redhe M, Fedorova N, Haarhoff J (2004) A comparison of metamodeling techniques for crashworthiness optimization. In: 10 th AIAA/ISSMO multidisciplinary analysis and optimization conference

  • Taguchi G, Organization AP (1986) Introduction to quality engineering: designing quality into products and processes. The Organization Tokyo

  • Won JM, Park SY, Lee JS (2002) Parameter conditions for monotonic Takagi–Sugeno–Kang fuzzy system. Fuzzy Sets Syst 132(2):135–146

    Article  MATH  MathSciNet  Google Scholar 

  • Yang RJ, Akkerman A, Anderson DF, Faruque OM, Gu L (2000) Robustness optimization for vehicular crash simulations. Comput Sci Eng 2(6):8–13

    Article  Google Scholar 

  • Yang R, Wang N, Tho C, Bobineau J, Wang B (2005) Metamodeling development for vehicle frontal impact simulation. J Mech Des 127(5):1014–1020

    Article  Google Scholar 

  • Yingjie L, Baoshu W (2005) Study on the control course of ANFIS based aircraft auto-landing. J Syst Eng Electron 16(3):583–587

    Google Scholar 

  • Youn BD, Choi K, Yang RJ, Gu L (2004) Reliability-based design optimization for crashworthiness of vehicle side impact. Struct Multidiscip Optim 26(3):272–283

    Article  Google Scholar 

  • Zhu P, Zhang Y, Chen G (2009) Metamodel-based lightweight design of an automotive front-body structure using robust optimization. Proc Inst Mech Eng Part D J Automob Eng 223(9):1133–1147

    Article  Google Scholar 

  • Zou T, Mahadevan S (2006) A direct decoupling approach for efficient reliability-based design optimization. Struct Multidiscip Optim 31(3):190–200

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate to Dhafer Marzougui, Pradeep Mohan, Vinay Nagabhushana and Steve Kan from FHWA/NHTSA National Crash Analysis Center (NCAC) at the George Washington University for providing vehicle FEM model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Abbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, M., Ghafari-Nazari, A., Reddy, S. et al. A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method. Struct Multidisc Optim 49, 485–499 (2014). https://doi.org/10.1007/s00158-013-0986-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0986-6

Keywords

Navigation