Skip to main content
Log in

Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Uniqueness and symmetry of solution are investigated for topology optimization of a symmetric continuum structure subjected to symmetrically distributed loads. The structure is discretized into finite elements, and the compliance is minimized under constraint on the structural volume. The design variables are the densities of materials of elements, and intermediate densities are penalized to prevent convergence to a gray solution. A path of solution satisfying conditions for local optimality is traced using the continuation method with respect to the penalization parameter. It is shown that the rate form of the solution path can be formulated from the optimality conditions, and the uniqueness and bifurcation of the path are related to eigenvalues and eigenvectors of the Jacobian of the governing equations. This way, local uniqueness and symmetry breaking process of the solution are rigorously investigated through the bifurcation of a solution path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2002) A level set method for shape optimization. C R Acad Sci 334:1125–1130

    MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 104:363–393

    Article  MathSciNet  Google Scholar 

  • Allgower EL, Georg K (1993) Continuation and path following. Acta Numer 2:1–64

    Article  MathSciNet  Google Scholar 

  • Belblidia F, Bulman S (2002) A hybrid topology optimization algorithm for static and vibrating shell structures. Int J Numer Methods Eng 24:835–852

    Article  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid–void topology optimization. Struct Multidisc Optim 30:428–436

    Article  MathSciNet  Google Scholar 

  • Bruns TE (2007) Topology optimization by penalty (TOP) method. Comput Methods Appl Mech Eng 196:4430–4443

    Article  MATH  MathSciNet  Google Scholar 

  • Choi KK, Kim N-H (2004) Structural sensitivity analysis and optimization, vol 1. Linear systems. Springer, New York

    Google Scholar 

  • Fiacco AV (1983) Introduction to sensitivity and stability analysis in nonlinear programming. Academic

  • Gal T (1979) Postoptimal analyses, parametric programming, and related topics. Mc-Graw Hill

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J Optim 12:979–1006

    Article  MATH  MathSciNet  Google Scholar 

  • Golubitsky M, Schaegger D (1979) A theory for imperfect bifurcation via singularity theory. Commun Pure Appl Math 32:21–98

    Article  MATH  Google Scholar 

  • Ikeda K, Murota K (2010) Imperfect bifurcation in structures and materials—engineering use of group-theoretic bifurcation theory, 2nd edn. Applied mathematical sciences, vol 149. Springer, New York

    Google Scholar 

  • Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130:203–226

    Article  MATH  MathSciNet  Google Scholar 

  • Kanno Y, Ohsaki M, Murota K, Katoh N (2001) Group symmetry in interior-point methods for semi-definite program. Optim Eng 2:293–320

    Article  MATH  MathSciNet  Google Scholar 

  • Kettle SFA (2007) Symmetry and structure: readable group theory for chemists. Wiley, Chichester

    Google Scholar 

  • Kočvara M, Outrata JV (2006) Effective reformulation of the truss topology design problem. Optim Eng 7:201–219

    Article  MATH  MathSciNet  Google Scholar 

  • Martínez JM (2005) A note on the theoretical convergence properties of the SIMP method. Struct Multidisc Optim 29:319–323

    Article  Google Scholar 

  • Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 35:1767–1773

    Article  MATH  Google Scholar 

  • Mittelmann HD, Roose D (eds) (1990) Continuation techniques and bifurcation problems. Birkhäuser, Basel

    MATH  Google Scholar 

  • Moses E, Fuchs MB, Ryvkin M (2003) Topology design of modular structures under arbitrary loading. Struct Multidisc Optim 24:407–417

    Article  Google Scholar 

  • Nakamura T, Ohsaki M (1988) Sequential optimal truss generator for frequency ranges. Comput Methods Appl Mech Eng 67(2):189–209

    Article  MATH  Google Scholar 

  • Ohsaki M (2006) Local and global searches of approximate optimal designs of regular frames. Int J Numer Methods Eng 67:132–147

    Article  MATH  MathSciNet  Google Scholar 

  • Ohsaki M, Nakamura T (1996) Minimum constraint perturbation method for topology optimization of systems. Eng Opt 26:171–186

    Article  Google Scholar 

  • Ohsaki M, Ikeda K (2007) Stability and optimization of structures—generalized sensitivity analysis. Mechanical engineering series. Springer, New York

    Google Scholar 

  • Petersson J (1999a) A finite element analysis of optimal variable thickness sheets. SIAM J Numer Anal 36(6):1759–1778

    Article  MATH  MathSciNet  Google Scholar 

  • Petersson J (1999b) Some convergence results of perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171:121–140

    Article  MathSciNet  Google Scholar 

  • Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41:1417–1434

    Article  MATH  MathSciNet  Google Scholar 

  • Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidisc Optim 21:159–163

    Article  Google Scholar 

  • Rietz A (2007) Modified conditions for minimum of compliance. Comput Methods Appl Mech Eng 196:4413–4418

    Article  MATH  MathSciNet  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37:217–237

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN (2011) On symmetry and nonuniqueness in exact topology optimization. Struct Multidisc Optim. Published online. doi:10.1007/s00158-010-0564-0

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Sigmund O (1994) Topology optimization. In: Adeli H (ed) Advances in design optimization, Chapter 10. Chapman and Hall, London

    Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level-set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidisc Optim 41:661–670

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001) On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization. Struct Multidisc Optim 21:140–151

    Article  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318

    Article  MATH  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  Google Scholar 

  • Watson LT, Haftka RT (1989) Modern homotopy methods in optimization. Comput Methods Appl Mech Eng 74(3):289–305

    Article  MATH  MathSciNet  Google Scholar 

  • Yamada T, Nishiwaki S, Izui K, Yoshimura M, Takezawa A (2009) A new level set based topology optimization method using a fictitious interface energy model based on phase field method concepts. In: Proc. 8th world congress of structural and multidisciplinary optimization (WCSMO8), paper no. 1136. Lisbon

  • Yamasaki S, Nomura T, Kawamoto A, Sato K, Izui K, Nishiwaki S (2010) A level set based topology optimization method using the discretized signed distance function as the design variables. Struct Multidisc Optim 41:685–698

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ohsaki.

Additional information

A part of this paper was presented at the 8th World Congress of Structural and Multidisciplinary Optimization (WCSMO8).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watada, R., Ohsaki, M. & Kanno, Y. Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance. Struct Multidisc Optim 43, 459–471 (2011). https://doi.org/10.1007/s00158-010-0587-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0587-6

Keywords

Navigation