Skip to main content
Log in

Environmental Risk Assessment of Drugs in Tropical Freshwaters Using Ceriodaphnia silvestrii as Test Organism

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study we evaluated the acute (immobility/mortality) and chronic (survival and reproduction) effects of the drugs caffeine, diclofenac sodium salt, ketoprofen, paracetamol and salicylic acid on the cladoceran Ceriodaphnia silvestrii. The environmental risks of these substances for tropical freshwaters were estimated from the risk quotient MEC/PNEC. Sensitivity in acute exposures varied up on the drug as follows: salicylic acid (EC50 = 69.15 mg L− 1) < caffeine (EC50 = 45.94 mg L− 1) < paracetamol (EC50 = 34.49 mg L− 1) < ketoprofen (EC50 = 24.84 mg L− 1) < diclofenac sodium salt (EC50 = 14.59 mg L− 1). Chronic toxicity data showed negative effects of the drugs on reproduction. Paracetamol and salicylic acid caused reduction in fecundity in concentrations starting from 10 mg L− 1 and 35 mg L− 1, respectively. Ketoprofen caused total inhibition at 5 mg L− 1. MEC/PNEC values were relatively low for all drugs. The risk was estimated as low or insignificant, except for caffeine, whose MEC/PNEC value was greater than 1 (moderate risk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ABNT - Associação Brasileira de Normas Técnicas (2016) NBR 12713. Aquatic ecotoxicology - acute toxicity - test with Daphnia spp. Crustacea, Cladocera), Rio de Janeiro, Brazil

    Google Scholar 

  • ABNT - Associação Brasileira de Normas Técnicas (2017) NBR 13373. Aquatic ecotoxicology - chronic toxicity - test with Ceriodaphnia spp. Crustacea, Cladocera), Rio de Janeiro, Brazil

    Google Scholar 

  • Ågerstrand M, Rudén C (2010) Evaluation of the accuracy and consistency of the swedish environmental classification and information system for pharmaceuticals. Sci Total Environ 408:2327–2339

    Article  Google Scholar 

  • Aldenberg T, Jaworska JS (2000) Uncertainty of hazardous concentrations and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18

    Article  CAS  Google Scholar 

  • An J, Zhou Q, Sun F et al (2009) Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L). J Hazard Mater 169:751–757

    Article  CAS  Google Scholar 

  • Bang SH, Hong N, Ahn J et al (2015) Proteomic analysis of Daphnia magna exposed to Caffeine, Ibuprofen, aspirin and tetracycline. J Toxicol Environ Health Sci 7:97–104

    Article  Google Scholar 

  • Bendz D, Paxéus NA, Ginn TR et al (2005) Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden. J Hazard Mater 122:195–204

    Article  CAS  Google Scholar 

  • Campanha MB, Awan AT, Sousa DNR et al (2015) A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. Environ Sci Pollut Res Int 22:7936–7947

    Article  CAS  Google Scholar 

  • Casali-Pereira MP, Daam MA, Resende JC et al (2015) Toxicity of Vertimec®18 EC (active ingredient abamectin) to the neotropical cladoceran Ceriodaphnia silvestrii. Chemosphere 139:558–564

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315

    Article  CAS  Google Scholar 

  • Di Lorenzo T, Castaño-Sánchez A, Di Marzio WD et al (2019) The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. Chemosphere 220:227–236

    Article  Google Scholar 

  • Dionísio R, Daniel D, Alkimin GD, Nunes B (2020) Multi-parametric analysis of ciprofloxacin toxicity at ecologically relevant levels: short- and long-term effects on Daphnia magna. Environ Toxicol Pharmacol

  • Du J, Mei CF, Ying GG et al (2016) Toxicity thresholds for Diclofenac, Acetaminophen and Ibuprofen in the water flea Daphnia magna. Bull Environ Contam Toxicol 97:84–90

    Article  CAS  Google Scholar 

  • European Medicines Agency (2006) Committee for medicinal products for human use (CHMP). Guideline on the environmental risk assessment of medicinal products for human use

  • European Commission (2003) Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, Part II

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferreira AP (2005) Caffeine as an environmental indicator for assessing urban aquatic ecosystems. Cad. Saúde Pública. Rio de Janeiro 21:1884–1892

    Google Scholar 

  • Henschel KP, Wenzel A, Diedrich M (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharmacol 25:220–225

    Article  CAS  Google Scholar 

  • Ide AH, Osawa RA, Marcante LO et al (2017) Occurrence of Pharmaceutical Products, female sex hormones and caffeine in a Subtropical Region in Brazil. Clean - Soil Air Water 45:1–9

    Article  Google Scholar 

  • Kim Y, Choi K, Jung J et al (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:370–375

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Komori K, Suzuki Y, Minamiyama M et al (2013) Occurrence of selected pharmaceuticals in river water in Japan and assessment of their environmental risk. Environ Monit Assess 185:4529–4536

    Article  CAS  Google Scholar 

  • Lee W, Wang YC (2015) Assessing developmental toxicity of caffeine and sweeteners in medaka (Oryzias latipes). Springerplus 486:1–10

    Google Scholar 

  • Lee HB, Peart TE, Svoboda ML (2005) Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1094:122–129

    Article  CAS  Google Scholar 

  • Li MH (2013) Acute toxicity of 30 pharmaceutically active compounds to freshwater planarians, Dugesia japonica. Environ Toxicol Chem 95:1157–1170

    Article  CAS  Google Scholar 

  • Lin AYC, Tsai YT (2009) Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407:3793–3802

    Article  CAS  Google Scholar 

  • Lin AYC, Yu TH, Lin CF (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74:131–141

    Article  CAS  Google Scholar 

  • Loos R, Gawlik BM, Locoro G et al (2009) EU-wide survey of polar organic persistent pollutants in european river waters. Environ Pollut 157:561–568

    Article  CAS  Google Scholar 

  • Marques CR, Abrantes N, Gonçalves F (2004) Life-history traits of standard and autochthonous cladocerans: II. Acute and chronic effects of acetylsalicylic acid metabolites. Environ Toxicol 19:527–540

    Article  CAS  Google Scholar 

  • Montagner CC, Sodré FF, Acayaba RD et al (2019) Ten years-snapshot of the occurrence of emerging contaminants in drinking, Surface and Ground Waters and Wastewaters from São Paulo State, Brazil. J Braz Chem Soc 30:614–632

    CAS  Google Scholar 

  • Murray KE, Thomas SM, Bodour AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut 158:3462–3471

    Article  CAS  Google Scholar 

  • Nakada N, Tanishima T, Shinohara H et al (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40:3297–3303

    Article  CAS  Google Scholar 

  • Oliveira LLD, Antunes SC, Gonçalves F et al (2015a) Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna. Drug Chem Toxicol 39:13–21

    Article  Google Scholar 

  • Oliveira LLD, Antunes SC, Gonçalves F et al (2015b) Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol Environ Saf 119:123–131

    Article  CAS  Google Scholar 

  • Oliveira LLD, Nunes B, Antunes SC et al (2018) Acute and Chronic Effects of three Pharmaceutical drugs on the Tropical Freshwater Cladoceran Ceriodaphnia silvestrii. Water Air Soil Pollut 229:1–18

    Google Scholar 

  • Rah YC, Yoo MH, Choi J et al (2017) In vivo assessment of hair cell damage and developmental toxicity caused by gestational caffeine exposure using zebrafish (Danio rerio) models. Neurotoxicol Teratol 64:1–7

    Article  CAS  Google Scholar 

  • Roberts PH, Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356:143–153

    Article  CAS  Google Scholar 

  • Santos LHMLM, Araújo AN, Fachini A et al (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  • Sotelo JL, Ovejero G, Rodríguez A et al (2014) Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J 240:443–453

    Article  CAS  Google Scholar 

  • Sousa DNR, Mozeto AA, Carneiro RL et al (2018) Spatio-temporal evaluation of emerging contaminants and their partitioning along a brazilian watershed. Environ Sci Pollut Res Int 25:4607–4620

    Article  Google Scholar 

  • US-EPA - US Environmental Protection Agency (2020) ECOTOX knowledge base. https://cfpub.epa.gov/ecotox/

  • US EPA - United States Environmental Protection Agency (2022) EPI Suite™ - Estimation Program Interface v4.11

  • Verenitch SS, Lowe CJ, Mazumder A (2006) Determination of acidic drugs and caffeine in municipal wastewaters and receiving waters by gas chromatography-ion trap tandem mass spectrometry. J Chromatogr 1116:193–203

    Article  CAS  Google Scholar 

  • Voogt P, Janex-Habibi ML, Sacher F et al (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59:39–46

    Article  Google Scholar 

  • Vulliet E, Cren-Olivé C, Grenier-Loustalot MF (2011) Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environ Chem Lett 9:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge CAPES and PROMOB/edital Capes/Fapitec/SE n. 10/2016 for the scholarship and financial support, respectively. R.A.M. has a pos doctoral grant from FAPESP (2017/24126-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Lopes Caldas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldas, L.L., Moreira, R.A., Espíndola, E.L.G. et al. Environmental Risk Assessment of Drugs in Tropical Freshwaters Using Ceriodaphnia silvestrii as Test Organism. Bull Environ Contam Toxicol 110, 106 (2023). https://doi.org/10.1007/s00128-023-03739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-023-03739-z

Keywords

Navigation