Skip to main content
Log in

Oxidative Damage in Roots of Rice (Oryza sativa L.) Seedlings Exposed to Microplastics or Combined with Cadmium

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of 10–40 mg L-1 polystyrene microplastics (PS-MPs), 0.05 mg L-1 cadmium (Cd) and their combination on the growth and related physiological and toxicological responses in Oryza sativa L. seedling roots. Results showed that the fresh weight, dry weight and root lengths of treatments by PS-MPs, Cd single and combinative were all lower than the control, and opposite phenomenon appeared in production of superoxide radical (O2-.), malondialdehyde (MDA) and carbonylated protein. Superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities induced by 10–40 mg L-1 PS-MPs and combination with Cd were almost higher than those by Cd alone, expression of heat shock protein (HSP)70 and carbonylated protein slightly decreased. In compound exposure, 10–20 mg L-1 PS-MPs alleviated Cd damage and promoted root growth by increasing SOD and POD activities, but 40 mg L-1 PS-MPs accelerated the accumulation of Cd, MDA, and O2-., which was responsible for decreasing root biomass and the aggravating necrosis of root tip cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad T, Amjad M, Iqbal Q, Batool A, Noor A, Jafr W, Hussain H, Irfan M (2022) Occurrence of microplastics and heavy metals in aquatic and agroecosystem: a case study. Bull Environ Contam Toxicol 109:266–271

    Article  CAS  Google Scholar 

  • Alimba CG, Faggio C (2019) Microplastics in the marine environment: currenttrends in environmental pollution and mechanisms of toxicological profifile. Environ Toxicol Pharmacol 68:61–74

    Article  CAS  Google Scholar 

  • Alimi OS, FarnerBudarz J, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52:1704–1724

    Article  CAS  Google Scholar 

  • Alomari E, Bruno S, Ronda L, Paredi G, Bettati S, Mozzarelli A (2018) Protein carbonylation detection methods: a comparison. Data in Brief 19:2215–2220

    Article  Google Scholar 

  • Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquaticanimals: why and how. Environ Int 36(2):226–235

    Article  CAS  Google Scholar 

  • Anderson JC, Park Bradley J, Palace VP (2016) Microplastics in aquatic environments: implications for canadian ecosystems. Environ Pollut 218:269–280

    Article  CAS  Google Scholar 

  • Banaee M, Soltanian S, Sureda A, Gholamhosseini A, Haghi BN, Akhlaghi M, Derikvandy A (2019) Evaluation of single and combined effects of cadmium and microplastic particles on biochemical and immunological parameters of common carp (Cyprinuscarpio). Chemosphere 236:124335

    Article  CAS  Google Scholar 

  • Banaee M, Sureda A, Taheri S, Hedayatzadeh F (2019b) Sub-lethal effects of dimethoate alone and in combination with cadmium on biochemical parameters in freshwater snail, Galba truncatula’. Comp Biochem Physiol C Toxicol Pharmacol 220:62–70

    Article  CAS  Google Scholar 

  • Capillo G, Silvestro S, Sanfifilippo M, Fiorino E, Giangrosso G, Ferrantelli V, Vazzana I, Faggio C (2018) Assessment of electrolytes and metals profifile of the faro lake (capo peloro lagoon, sicily, Italy) and its impact on Mytilusgalloprovinciali. Chem Biodivers 15(5):1800044

    Article  Google Scholar 

  • Chen XJ, Ma JJ, Yu RL, Hu GR, Yan y (2022) Bioaccessibility of microplastic-associated heavy metals using an in vitro digestion model and its implications for human health risk assessment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-20983-8

    Article  Google Scholar 

  • De Frond HL, van Sebille E, Parnis JM, Diamond ML, Mallos N, Kingsbury T, Rochman CM (2019) Estimating the mass of chemicals associated with ocean plastic pollution to inform mitigation efforts. Integr Environ Assess Manag 15(4):596–606

    Article  Google Scholar 

  • Dong YM, Gao ML, Qiu WW, Song ZG (2021) Effect of microplastics and arsenic on nutrients and microorganisms in rice rhizospheresoil. Ecotox Environ Safe 211:111899

    Article  CAS  Google Scholar 

  • Dong YM, Gao ML, Song ZG, Qiu WW (2020) Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 259:113892

    Article  CAS  Google Scholar 

  • Dong Y, Bao Q, Gao M, Qiu W, Song Z (2022) A novel mechanism study of microplastic and as co-contamination on indica rice (Oryza sativaL.). J Hazard Mater 421:126694

    Article  CAS  Google Scholar 

  • Gong J, Xie P (2020) Research progress in sources, analytical methods, eco-environmental effects and control measures of microplastics. Chemosphere 254:126790

    Article  CAS  Google Scholar 

  • Hartmann NB, Rist S, Bodin J, Jensen LH, Schmidt SN, Mayer P, Meibom A, Baun A (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13:488–493

    Article  Google Scholar 

  • Huerta Lwanga E, Mendoza Vega J, Ku Quej V, Chi JDLA, Lucero SDC, Chi C, Escalona Segura G, Gertsen H, Salánki T, Martine VDP (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(11):14071

    Article  Google Scholar 

  • Jie Y, Cang L, Sun Q, Dong G, Ata-Ul-Karim ST, Zhou DM (2019) Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environ Sci Pollut Res 26(22):23027–23036

    Article  Google Scholar 

  • Jiang XF, Chen H, Liao YC, Ye ZQ, Li M, Klobu ar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba Environ Pollut. 250:831–838

  • Khalid N, Hussain M, Young HS, Boyce B, Aqeel M, Noman A (2018) Effects of road proximity on heavy metal concentrations in soils and common roadside plants in Southern California. Environ Sci Pollut Res 25:35257–35265

    Article  CAS  Google Scholar 

  • Leslie HA, van Velzen MJM, Brandsma SH, Vethaak D, Garcia-Vallejo JJ, Lamoree MH (2022) Discovery and quantification of plastic particle pollution in human blood. Environ Int 163:107199

    Article  CAS  Google Scholar 

  • Li J, Yu SG, Yu YF, Xu ML (2022) Efects of Microplastics on higher plants: a review. Bull Environ Contam Toxicol 109:241–265

    Article  CAS  Google Scholar 

  • Li LZ, Luo YM, Li RJ, Zhou Q, Peijnenburg WJGM, Yin N, Yang J, Tu C, Zhang YC (2020) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain 3:929–937

    Article  Google Scholar 

  • Li XF, Zhang ZL (2016) Guidance of plant physiology experiments. Higher Education Press, Beijing

    Google Scholar 

  • Liao YC, Jahitbek N, Li M, Wang XL, Jang L (2019) Effect of microplastics on the growth, physiological and biochemical characteristics of wheat. Environ Sci 3:113–120 (in Chinese)

    Google Scholar 

  • Lian JP, Wu J, Xiong H, Zeb A, Liu W (2020) Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat

  • (Triticum aestivum L.). J Hazard Mater 385:121620

  • Lu K, Qiao RX, An H, Zhang Y (2018) Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Daniorerio). Chemosphere 202:514–520

    Article  CAS  Google Scholar 

  • Li Z, Li Q, Li R, Zhou J, Wang G (2021c) The distribution and impact of polystyrene nanoplastics on cucumber plants. Environ Sci Pollut Res 28:16042–16053

    Article  CAS  Google Scholar 

  • Mao YF, Ai HN, Chen Y, Zhang ZY, Zeng P, kang L, Li W, Gu WK, He Q, Li H (2018) Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208:59–68

    Article  CAS  Google Scholar 

  • Minibayeva F, Beckett R, Kranner I (2015) Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry 112:122–129

    Article  CAS  Google Scholar 

  • Mockaits G, Rodrigues JA, Foresti E, Zaiat M (2012) Toxic effects of cadmium(Cd2+) on anaerobic biomass: kinetic and metabolic implications. J Environ Manage 106:75–84

    Article  Google Scholar 

  • Moller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photoch Photobio Sci 3:730–735

    Article  CAS  Google Scholar 

  • Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen DL (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388

    Article  CAS  Google Scholar 

  • Nikiema J, Asiedu Z (2022) A review of the cost and efectiveness of solutions to address plastic pollution. Environ Sci Pollut Res 29:24547–24573

    Article  Google Scholar 

  • Pan K, Chen CC, Lin L, Xu H, Chen FY, Li YP, Zhu XS, Ma J, Lan WL (2022) Adsorption of di (2-ethylhexyl) phthalate (DEHP) to microplastics in seawater: a comparison between pristine and aged particles. Bull Environ Contam Toxicol https://link.springer

  • com/article/ https://doi.org/10.1007/s00128-022-03570-y

  • Revel M, Chatel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr. Opin Environ Sci Health 1:17–23

    Article  Google Scholar 

  • Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in EiseniaandreiBouché. Environ Pollut 220:495–503

    Article  CAS  Google Scholar 

  • Rong H, Wang CR, Yu XR, Fan JB, Jiang P, Wang YC, Gan XQ, Wang Y (2018) Carboxylatedmulti-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium. Ecotox Environ Safe 161:616–623

    Article  CAS  Google Scholar 

  • Sjollema SB, Redondo-Hasselerhar MP, Leslie HA, Kraak MH, Vethaak AD (2016) Do plastic particles affect microalgal photosynthesis and growth. Aquat Toxicol 170:259–261

    Article  CAS  Google Scholar 

  • Tamminga M, Hengstmann E, Deuke Ak, Fischer EK (2022) Microplastic concentrations, characteristics, and fluxes in water bodies of the Tollense catchment, Germany, with regard to different sampling systems. Environ Sci Pollut Res 29:11345–11358

    Article  CAS  Google Scholar 

  • Tunali M, Uzoefuna EN, Tunali MM, Yenigun O (2020) Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci Total Environ 743:140479

    Article  CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

    Article  CAS  Google Scholar 

  • Wang FY, Yang WW, Cheng P, Zhang SQ, Zhang SW, Jiao WT, Sun YH(2019) Adsorption characteristics of cadmium onto microplastics from aqueous solutions.Chemosphere 235: 1073–1080

  • Wang HT, Ding J, Xiong C, Zhu D, Li G, Jia XY, Zhu YG, Xue XM (2019a) Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphirecalifornica. Environ Pollut 251:110–116

    Article  CAS  Google Scholar 

  • Wang J, Lv S, Zhang M, Chen G, Zhu T, Zhang S, Teng Y, Christie P, Luo Y (2016) Effects of plastic fifilm residues on occurrence of phthalates and microbial activity in soils. Chemosphere 151:171–177

    Article  CAS  Google Scholar 

  • Wang JD, Tan Z, Peng JJ, Qiu QG, Li MM (2016) The behaviors of microplastics in themarineenvironment. Mar Environ Res 113:7–17

    Article  CAS  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Wang XJ, Li L, Zhang SC (2019) Plant Physiology. Higher Education Press, China, pp 83–85

    Google Scholar 

  • Wardlaw C, Prosser RS (2020) Investigation of microplastics in freshwater mussels (Lasmigonacostata) from the Grand River watershed in Ontario. Can Water Air Soil Poll 231:405–419

    Article  CAS  Google Scholar 

  • Wu JN, Liu WT, Zeb A, Lian JP, Sun YB, Sun HW (2021) Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism. Environ Sci Nano 8:3699–3710

    Article  CAS  Google Scholar 

  • Yang J, Cang L, Sun Q, Dong G, Ata-Ul-Karim ST, Zhou DM (2019) Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environ Sci Pollut Res 26:23027–23036

    Article  CAS  Google Scholar 

  • Zhang C, Jian MF, Chen YM, Chen QQ, He XF, Cong MY, Yang WJ (2021) Effect of polystyrene microplastics (PS-MPs) on the growth, physiological and biochemical characteristics of Hydrilla verticillata. Chin J Appl Ecol 32(1):317–325

    Google Scholar 

  • Zhang Q, Zhao M, Meng F, Xiao Y, Dai W, Luan - Toxics Y (2021) Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics 9(8):179187

    Article  Google Scholar 

  • Zhang W, Zhang S, Zhao Q, Qu L, Wang J (2020) Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China. Mar Pollut Bull 158:111343

    Article  CAS  Google Scholar 

  • Zheng XW, Yuan Y, Li YY, Liu X, Wang XR, Fan ZQ (2021) Polystyrene nanoplastics affect growth and microcystin production of Microcystisaeruginosa. Environ Sci Pollut Res 28:13394–13403

    Article  CAS  Google Scholar 

  • Zhou J, Gui H, Banfeld CC, Wen Y, Zang H (2021) The microplastic sphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol Biochem 156:108211

    Article  CAS  Google Scholar 

  • Ziccardi L, Edgington A, Hentz K, Kulacki K, Driscoll SK (2016) Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: a state-of-the-science review. Environ Toxicol Chem 35:1667–1676

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Projects of Education Department of Anhui Province (KJ2020A0649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no Conflict of Interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhou, Y., Wang, C. et al. Oxidative Damage in Roots of Rice (Oryza sativa L.) Seedlings Exposed to Microplastics or Combined with Cadmium. Bull Environ Contam Toxicol 110, 15 (2023). https://doi.org/10.1007/s00128-022-03659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-022-03659-4

Keywords

Navigation