Skip to main content
Log in

Effects of Phosphorus on Interspecific Competition between two cell-size Cyanobacteria: Synechococcus sp. and Microcystis aeruginosa

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Pico-cyanobacteria and micro-cyanobacteria coexist ubiquitously in many lakes. Differences in cell size and abilities to utilize nutrients may influence their distribution patterns. In this study, Synechococcus sp. and Microcystis aeruginosa were chosen as pico- and micro-cyanobacteria, respectively. Gradient phosphorus treatments (0.002, 0.01, 0.05, and 0.25 mg P L−1) were designed in mono- and co-cultures. Growth curves were recorded and fitted by the Monod equation. Moreover, the interspecific competition was analyzed by the Lotka–Volterra model. When mono-cultured in lower P conditions (≤ 0.01 mg P L−1), Synechococcus sp. obtained much higher biomass than M. aeruginosa. But, M. aeruginosa grew faster than Synechococcus sp. in higher P groups (≥ 0.05 mg P L−1) (p < 0.05). Synechococcus sp. has abilities to thrive in low-phosphorus environments, whereas M. aeruginosa favored high-phosphorus conditions. In co-cultures, Synechococcus sp. strongly inhibited M. aeruginosa at each P treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barber RT (2007) Picoplankton do some heavy lifting. Science 315:777–778

    Article  CAS  Google Scholar 

  • Berkson J (1944) Application of the logistic function to bio-assay. J Am Stat Assoc 39:357–365

    CAS  Google Scholar 

  • Björkman K, Duhamel S, Karl DM (2012) Microbial group specific uptake kinetics of inorganic phosphate and adenosine-5′-triphosphate (ATP) in the north Pacific subtropical gyre. Front Microbiol 3:1–17

    Article  CAS  Google Scholar 

  • Brookes JD, Ganf GG (2001) Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J Plankton Res 23:1399–1411

    Article  Google Scholar 

  • Cade-Menun BJ, Paytan A (2010) Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121:27–36

    Article  CAS  Google Scholar 

  • Cai Y, Kong F (2013) Diversity and dynamics of picocyanobacteria and the bloom-forming cyanobacteria in a large shallow eutrophic lake (Lake Chaohu, China). J Limnol 72:473–484

    Article  Google Scholar 

  • Callieri C, Caravati E, Corno G, Bertoni R (2012) Picocyanobacterial community structure and space-time dynamics in the subalpine lake Maggiore (Italy). J Limnol 71:95–103

    Article  Google Scholar 

  • Danish Standard (2004) Water quality: determination of phosphorus—ammonium molybdate spectrometric method. DS/EN ISO 6878:2004. Danish Standard, Copenhagen

    Google Scholar 

  • Duan Z, Tan X, Parajuli K, Upadhyay S, Zhang D, Shu X, Liu Q (2018) Colony formation in two Microcystis morphotypes: Effects of temperature and nutrient availability. Harmful Algae 72:14–24

    Article  CAS  Google Scholar 

  • Elshanawany R, Zonneveld KAF (2016) Dinoflagellate cyst distribution in the oligotrophic environments of the Gulf of Aqaba and northern Red Sea. Mar Micropaleontol 124:29–44

    Article  Google Scholar 

  • Eppley RW, Rogers JN, Mccarthy JJ (1969) Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol Oceanogr 14:912–920

    Article  CAS  Google Scholar 

  • Feng L, Liu S, Wu W, Ma J, Li P, Xu H, Li N, Feng Y (2016) Dominant genera of cyanobacteria in lake Taihu and their relationships with environmental factors. J Microbiol 54:468–476

    Article  CAS  Google Scholar 

  • Fukuda R, Ogawa H, Nagata T, Koike II (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    CAS  Google Scholar 

  • Fuller NJ, West NJ, Marie D, Yallop M, Rivlin T, Post AF, Scanlan DJ (2005) Dynamics of community structure and P status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea during 1999–2000. Limnol Oceanogr 50:363–375

    Article  CAS  Google Scholar 

  • Havens KE, Jin KR, Iricanin N (2007) Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA. Hydrobiologia 581:25–42

    Article  CAS  Google Scholar 

  • Imai H, Chang K, Kusaba M, Nakano S (2009) Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J Plankton Res 31:171–178

    Article  Google Scholar 

  • Ji Y, Sherrell RM (2008) Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol Oceanogr 53:1790–1804

    Article  CAS  Google Scholar 

  • Karl DM (2002) Nutrient dynamics in the deep blue sea. Trends Microbiol 10:410–418

    Article  CAS  Google Scholar 

  • Kolmakov VI (2006) Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in aquatic ecosystems. Mikrobiologiia 75:149–153

    CAS  Google Scholar 

  • Kolmonen E, Sivonen K, Rapala J, Haukka K (2004) Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas Finland. Aquat Microb Ecol 36:201–211

    Article  Google Scholar 

  • Latour D, Giraudet H, Berthon JL (2004) Frequency of dividing cells and viability of Microcystis aeruginosa in sediment of a eutrophic reservoir. Aquat Microb Ecol 36:117–122

    Article  Google Scholar 

  • Li M, Zhu W, Gao L, Lu L (2013) Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25:1023–1030

    Article  CAS  Google Scholar 

  • Ma J, Brookes JD, Qin B, Paerl HW, Gao G, Wu P, Zhang W, Deng J, Zhu G, Zhang Y, Xu H, Niu H (2014) Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae 31:136–142

    Article  CAS  Google Scholar 

  • Mahaffey C, Björkman KM, Karl DM (2012) Phytoplankton response to deep seawater nutrient addition in the North Pacific Subtropical Gyre. Mar Ecol Prog Ser 460:13–34

    Article  CAS  Google Scholar 

  • Mao H, Xu H, Liu ZP, Mehta SK (2008) Effect of initial cell density on population competition between Skeletonema costatum and Chaetoceros curvisetus. Mar Environ Sci 27:458–461

    Google Scholar 

  • Marinho MM, Souza MB, Lurling M (2013) Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Microb Ecol 66:479–488

    Article  CAS  Google Scholar 

  • Martiny AC, Huang Y, Li W (2009) Occurrence of phosphate acquisition genes in Prochlorococcus, cells from different ocean regions. Environ Microbiol 11:1340–1347

    Article  CAS  Google Scholar 

  • Monbet P, Mckelvie I, Saefumillah A (2007) A protocol to assess the enzymatic release of dissolved organic phosphorus species in waters under environmentally relevant conditions. Environ Sci Technol 41:7479–7485

    Article  CAS  Google Scholar 

  • Monod J (1950) La technique de culture continue: théorie et applications. In: Lwoff A, Ullmann A (eds) Selected papers in molecular biology by jacques monod. Academic Press, New York, pp 184–204

    Google Scholar 

  • Mountain T, Thingstad TF, Wambeke FV, Marie D, Slawyk G, Raimbault P, Claustre H (2002) Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus?. Limnol Oceanogr 47:1562–1567

    Article  Google Scholar 

  • Mulder C, Hendriks AJ (2014) Half-saturation constants in functional responses. Global Ecol Conserv 2:161–169

    Article  Google Scholar 

  • Paerl HW (2008) Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Adv Exp Med Biol 619:217–237

    Article  CAS  Google Scholar 

  • Raven JA (1998) The twelfth tansley lecture, small is beautiful: the picophytoplankton. Funct Ecol 12:503–513

    Article  Google Scholar 

  • Riebesell U, Wolf-Gladrow DA (2002) Supply and uptake of inorganic nutrients. In: Williams PJ le Thomas B, Reynolds DN, C.S., (eds) Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Blackwell Science Ltd, Oxford, pp 78–108

    Google Scholar 

  • Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy JP (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw Biol 53:756–771

    Article  Google Scholar 

  • Tambi H, Flaten GAF, Egge JK, Bødtker G, Jacobsen A, Thingstad TF (2009) Relationship between phosphate affinities and cell size and shape in various bacteria and phytoplankton. Aquat Microb Ecol 57:311–320

    Article  Google Scholar 

  • Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus. Adv Microb Ecol 16:115–167

    Article  CAS  Google Scholar 

  • Vaulot D, Lebot N, Marie D, Fukai E (1996) Effect of phosphorus on the Synechococcus cell cycle in surface Mediterranean waters during summer. Appl Environ Microb 62:2527–2533

    CAS  Google Scholar 

  • Verity PG (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446

    Article  CAS  Google Scholar 

  • Vollenweider RA, Kerekes J (1982) Eutrophication of waters. monitoring assessment and control. Organization for Economic Co-Operation and Development (OECD), Paris, 156 pp

    Google Scholar 

  • Volterra V (1926) Fluctuation in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Xiao M, Willis A, Burford MA (2017) Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Harmful Algae 62:84–93

    Article  CAS  Google Scholar 

  • Xiao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol Rev 93:1399–1420

    Article  Google Scholar 

  • Ye W, Tan J, Liu X, Lin S, Pan J, Li D, Yang H (2011) Temporal variability of cyanobacterial populations in the water and sediment samples of Lake Taihu as determined by DGGE and real-time PCR. Harmful Algae 10:472–479

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31470507), the Fundamental Research Funds for the Central Universities (2019B14014), the National Water Pollution Control and Treatment Science and Technology Major Project (2017ZX07603) and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Gu, H., Zhang, X. et al. Effects of Phosphorus on Interspecific Competition between two cell-size Cyanobacteria: Synechococcus sp. and Microcystis aeruginosa. Bull Environ Contam Toxicol 102, 231–238 (2019). https://doi.org/10.1007/s00128-018-2527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2527-x

Keywords

Navigation