Skip to main content

Advertisement

Log in

Lead Tolerance and its Accumulation by a Tree Legume: Dalbergia sissoo DC

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Dalbergia sissoo DC, a leguminous tropical timber tree has been investigated against the Pb toxicity; under the Pb-stress, plant’s morphology, biochemical parameters and genomic template stability (GTS) screened in vitro. At the optimum Pb tolerance level (150 mg L−1), plant’s defense mechanism—superoxide dismutase, catalase, ascorbate peroxidases and proline could trigger to achieve optimum vegetative growth with minimum fluctuations of the GTS. Further, D. sissoo roots could accumulate 2399.8 ± 16 mg kg−1 Pb. Scanning electron microscopy and energy dispersive X-ray spectrometer analysis also revealed the deposition of Pb in root tissues. In a 1 year pot experiment with Pb-contaminated soil, the plants exhibited normal growth, and Pb accumulation significantly enhanced by the amalgamation of citric acid in the soil. Thus, the tree may prove as a potential candidate for Pb phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad M, Gaur R, Gupta M (2012) Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mater 217–218:141–148

    Article  Google Scholar 

  • Ashraf U, Hussain S, Anjum SA, Abbas F, Tanveer M, Noor MA, Tang X (2017) Alteration in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol Biochem 115:461–471

    Article  CAS  Google Scholar 

  • Baker DE, Amacher MC (1982) Nickel, copper, zinc and cadmium. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy, New York, pp 323–336

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • CABI (Centre for Agriculture and Biosciences International) (2013) Dalbergia sissoo. http://www.cabi.org/isc/datasheet/17808. Accessed 5 Apr 2018

  • Carrillo-Chávez A, Salas-Megchún E, Levresse G, Muñoz-Torres C, Pérez-Arvizu O, Gerke T (2014) Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: modeling geochemical controls of metals in the surface environment. J Geochem Explor 144:28–36

    Article  Google Scholar 

  • Chance M, Maehly AC (1956) Assay of catalase and peroxidases. Methods Enzymol 2:764–814

    Article  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut R 10:256–264

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Drăghiceanu O, Soare L, Fierăscu I, Fierăscu R, Popescu M (2018) Lead-induced physiological, biochemical and enzymatic changes in Asplenium scolopendrium L. Bull Environ Contam Toxicol 100(3):438–443

    Article  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63(6):996–1004

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Hiscox JDT, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    Article  CAS  Google Scholar 

  • Husen A (2009) Growth, chlorophyll fluorescence and biochemical markers in clonal ramets of shisham (Dalbergia sissoo Roxb.) at nursery stage. New For 38(2):117–129

    Article  Google Scholar 

  • Jones jr-JB, Wolf B, Mills HA (1991) Plant analysis handbook. Micro-Macro Publishing, Athens

    Google Scholar 

  • Liu W, Yang YS, Li PJ, Zhou QX, Xie LJ, Han YP (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazard Mater 161(2–3):878–883

    Article  CAS  Google Scholar 

  • Malar S, Manikandan R, Favas P, Sahi VS, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  Google Scholar 

  • Meers E, Tack FMG, Van Slyeken S, Ruttens A, Du Laing G, Vangronsveld J, Ver-loo MG (2008) Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals. Int J Phytoremediat 10:390–414

    Article  CAS  Google Scholar 

  • Mohanty M (2016) Post-harvest management of phytoremediation technology. J Environ Anal Toxicol 6(5):398

    Article  Google Scholar 

  • Mukhtar I, Bajwa R, Nasim G (2015) Major constraints on shisham (Dalbergia sissoo) plantations and pathological debate on dieback disease in Punjab, Pakistan. J For Res 26(2):267–271

    Article  Google Scholar 

  • Nakono Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    Google Scholar 

  • Özkan A, Günkaya Z, Banar M (2016) Pyrolysis of plants after phytoremediation of contaminated soil with lead, cadmium and zinc. Bull Environ Contam Toxicol 96(3):415–419

    Article  Google Scholar 

  • Patel KS, Shrivas K, Hoffmann P, Jakubowski N (2006) A survey of lead pollution in Chhattisgarh state, Central India. Environ Geochem Health 28(1–2):11–17

    Article  CAS  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–474

    Article  CAS  Google Scholar 

  • Rodriguez E, da Conceição Santos M, Azevedo R, Correia C, Moutinho-Pereira J, de Oliveira JMPF, Dias MC (2014) Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar. Environ Sci Pollut R 22(1):574–585

    Article  Google Scholar 

  • Sah SP, Sharma CK, Sehested F (2003) Possible role of the soil in the sissoo forest (Dalbergia sissoo Roxb.) decline in the Nepal Terai. Plant Soil Environ 49(8):378–385

    Article  Google Scholar 

  • Shanker AK, Ravichandran V, Pathmanabhan G (2005) Phytoaccumulation of chromium by some multipurpose-tree seedlings. Agrofor Syst 64:83–87

    Article  Google Scholar 

  • Shi X, Chen Y, Wang S, Pan H, Sun H, Liu C, Liu J, Jiang Z (2016) Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediat 18(11):1155–1163

    Article  CAS  Google Scholar 

  • Shi X, Wang S, Sun H, Chen Y, Wang D, Pan H, Zou Y, Liu J, Zheng L, Zhao X, Jiang Z (2017) Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings. Environ Sci Pollut Res 24(4):3400–3411

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2016) Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Bioch 105:290–296

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017a) Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils. Chemosphere 182:129–136

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017b) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm.(Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    Article  CAS  Google Scholar 

  • Sidhu GPS, Bali AS, Bhardwaj R, Singh HP, Batish DR, Kohli RK (2018a) Bioaccumulation and physiological responses to lead (Pb) in Chenopodium murale L. Ecotoxicol Environ Saf 151:83–90

    Article  CAS  Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2018b) Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae. Int J phytoremediat 20(5):483–489

    Article  CAS  Google Scholar 

  • Tung G, Temple PJ (1996) Uptake and localization of lead in corn (Zea mays L.) seedlings, a study by histochemical and electron microscopy. Sci Total Environ 188(2–3):71–85

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJ (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171:544–553

    Article  CAS  Google Scholar 

  • Verma S, Dubey RC (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Webb EL, Hossain SMY (2005) Dalbergia sissoo mortality in Bangladesh plantations: correlations with environmental and management parameters. For Ecol Manag 206(1–3):61–69

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819–822

    Article  CAS  Google Scholar 

  • Yongpisanphop J, Babel S, Kruatrachue M, Pokethitiyook P (2017) Hydroponic screening of fast-growing tree species for lead phytoremediation potential. Bull Environ Contam Toxicol 99(4):518–552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Department of Science & Technology, New Delhi (India) for awarding INSPIRE fellowship (DST/INSPIRE fellowship/2014 dated 11.03.2015) to Inderpal Kaur and also providing facilities in form of a departmental project—DST-FIST, Level 1 (Sanction No.: C. Dy. No. 2384/IFD/2014-15 dated 31.07.2014 & 06.08.2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afaque Quraishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Jadhav, S.K., Tiwari, K.L. et al. Lead Tolerance and its Accumulation by a Tree Legume: Dalbergia sissoo DC. Bull Environ Contam Toxicol 101, 506–513 (2018). https://doi.org/10.1007/s00128-018-2419-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2419-0

Keywords

Navigation