Skip to main content

Advertisement

Log in

Arabidopsis arenosa (L.) Law. On Metalliferous and Non-metalliferous Sites in Central Slovakia

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study compared morphological characteristics and seed germinative capabilities of the metallophyte Arabidopsis arenosa grown at a copper mining heap with individuals of the same species grown at a reference site. We observed the height of the plant, the width of rosette leaves at ground level, the width and length of the lowest stem leaf, the number of seeds per silique, the below-ground biomass weight and the above-ground biomass weight. We found that the pH and the Eh of soil taken from the root sphere of A. arenosa were similar on both sites, and the pH ranged from 5.87 on the heap to 7.03 on the reference site. The measured morphological attributes and the number of seeds produced were significantly reduced (p < 0.01) in plants from the metalliferous site. The biggest difference was in leaf length, where plants from the heap were almost 2.5-times smaller. The mean germinative capacity of seeds ranged from 87 % to 93 %, and was not different between sites. The length of roots of germinated seeds from the heap (9.14 mm) was significantly longer than those from the reference site (8.27 mm). Results support the hypothesis of the influence of site conditions and heavy metals on the habitus of the plant and its development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agricola G (2011) De re metallica libri XII (1566). Montanex, Ostrava

    Google Scholar 

  • Aschenbrenner Š, Turisová I, Štrba T (2011) Flóra a vegetácia haldového poľa v Španej Doline. Acta Universitatis Matthiae Belii: séria environmentálne manažérstvo 13(2):71–77

    Google Scholar 

  • Baker AJM, Mcgrath SP, Reeves RD, Smith JA (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. Lewis Publishers, Boca Raton, pp 85–109

    Google Scholar 

  • Banásová V (1976) Vegetácia medených a antimónových háld. Biol Práce 22:1–109

    Google Scholar 

  • Banásová V (1983) Die Vegetation auf Pyrithalden un der Gehalt an Cu, Pb, Zn, As, Ag, Fe und S in den Pflanzen und im Boden. Biologia 38:469–480

    Google Scholar 

  • Banásová V, Horak O, Čiamporová M, Nadubinská M, Lichtscheidl I (2006) The vegetation of metalliferous and non-metalliferous grasslands in two former mine regions in central Slovakia. Biologia 61(4):433–439

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2001) Seeds—ecology, biogeography, and evolution of dormancy and germination. Academic, San Diego

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, London

    Google Scholar 

  • Cambpell MH (1985) Germination, emergence and seedling growth of Hypericum perforatum L. Weed Res 25(4):259–266

    Article  Google Scholar 

  • Cambpell MH, Delfosse ES (1984) The biology of Australian weeds, 13 Hypericum perforatum L. J Aust Inst Agric Sci 50(2):63–73

    Google Scholar 

  • Čiamporová M, Staňová A, Valaseková E, Nadubinská M, Banásová V (2009) Root anatomy and growth of three Arabidopsis species differing in their heavy metal tolerance. In: International symposium root research and applications–RootRAP, 2–4. Boku, Vienna.September 2009

  • Decision of Ministry of Agriculture of the Slovak Republic on the maximum allowed values of pollutants in soil no. 531/1994-540 [Rozhodnutie Ministerstva pôdohospodárstva Slovenskej republiky č. 531/1994-540 o najvyšších prípustných hodnotách rizikových látok v pôde]. Vestník MP SR, vol. XXVI, part I

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Gustav Fischer Verl, Stuttgart

    Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80(3):251–274

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    Article  CAS  Google Scholar 

  • ISTA (1985) International rules for seed testing, In Ellis RH, Hong TD, Roberts EH(eds) information and test recommendations, handbooks for genebanks, No. 3. IPGRI, Rome p 667

  • Jurkovič E (2005) Dejiny kráľovského mesta Banská Bystrica. OZ Pribicer, Banská Bystrica

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Florida

    Google Scholar 

  • Lambinon J, Auquier P (1963) La flore et la végétation des terraine calaminaires de la wallonie septentrionale et de la Rhénnanio arxoist. Natura Mosana 16:113–130

    Google Scholar 

  • Marhold K, Hindák F (1998) Zoznam nižších a vyšších rastlín Slovenska. Veda, Bratislava

    Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  Google Scholar 

  • Przedpelska E, Wierzbicka M (2007) Arabidopsis arenosa (Brassicaceae) from a lead-zinc waste heap in southern Poland—a plant with high tolerance to heavy metals. Plant Soil 299:43–53

    Article  CAS  Google Scholar 

  • Rivero-Lepinckas L, Crist D, Scholl R (1998) Growth of plants and preservation of seeds. Arabidopsis protocols Methods Mol Biol 82(1):1–12

    Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils, U. S. Environ Protection Agency, EPA 600/2-78-054, Cincineti, Ohio

  • Wierzbicka M, Rostański A (2002) Microevolutionary changes in ecotypes of calamine waste heap vegetation neae Olkusz, Poland: a review. Acta Biol Cracov Ser Bot 44:7–19

    Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Ann Bot 80:363–370

    Article  CAS  Google Scholar 

  • Zarzycki K, Trziňska-Tacik H, Rózaňski W, Szelag Z, Wolek J, Korzeniak U (2002) Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

    Google Scholar 

  • Zhang M, Senoura T, Yang X, Nishizawa NK (2011) Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance. FEBS Lett 585:2604–2609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financialy supported by grant scheme APVV-0663–10, VEGA 2/0065/11, VEGA 2/0099/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Turisová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turisová, I., Štrba, T., Aschenbrenner, Š. et al. Arabidopsis arenosa (L.) Law. On Metalliferous and Non-metalliferous Sites in Central Slovakia. Bull Environ Contam Toxicol 91, 469–474 (2013). https://doi.org/10.1007/s00128-013-1074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-013-1074-8

Keywords

Navigation