Skip to main content
Log in

Fluid evolution of the Lindero porphyry gold deposit, NW Argentina: the critical role of salt melts in ore formation

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Lindero deposit is located in the Puna plateau, northwest Argentina, at the southern end of the Central Volcanic Zone of the Central Andes. The high-K calc-alkaline dioritic composition of the subvolcanic intrusions, the shallow emplacement depth (< 1.5 km), and the gold-rich and copper-depleted mineralization style suggest that the Lindero deposit is a porphyry gold deposit. Porphyry gold deposits are scarce worldwide and the factors controlling their formation are still poorly known. Here we present a detailed study of fluid inclusions in order to characterize the mineralizing fluids that precipitated the Au mineralization at Lindero. Different types of fluid inclusions in quartz veins (A-type and banded quartz), which are associated with the K-silicate alteration, were analyzed using Raman spectroscopy, microthermometry, and LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry). Four inclusion types can be recognized in quartz veins: (i) Salt melt inclusions, which are characterized by a dense packing of daughter minerals (mainly Fe-chloride, sylvite, halite, anhydrite, and hematite), by a distorted vapor bubble, and by the lack of liquid phase; (ii) Halite-bearing inclusions which contain liquid, vapor, and halite; (iii) Two-phase aqueous inclusions that contain liquid and vapor; (iv) Vapor-rich inclusions containing only vapor. The inclusion types are related to different stages of hydrothermal evolution. Stage 1 is the main mineralization stage, characterized by vapor-rich inclusions coexisting with salt melt inclusions. Salt melt inclusions commonly show total homogenization temperature (ThL) > 1000 °C. This Na-K-Fe-Cl-rich highly saline brine (~ 90 wt% NaCl eq.) was of magmatic origin and responsible for the Au mineralization. Two later stages involving cooler fluids (ThL < 300 °C) and gradually lower salinities (from 36.1 to 0.2 wt% NaCl eq.) trapped by halite-bearing and two-phase aqueous inclusions during stages 2 and 3, respectively, correspond to a late magmatic-hydrothermal system, that is probably related to a deep supercritical fluid exsolution. Salt melt inclusions represent the most likely parental fluid of K-silicate alteration and associated Au mineralization at Lindero. This uncommon type of fluid must have played an important role in Au transport and precipitation in shallow porphyry gold deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Simón et al. (2021)

Fig. 2

Modified from Simón et al. (2021)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Modified from Koděra et al. (2017)

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Modified from Driesner and Heinrich (2007), Richards (2011), and Koděra et al. (2014)

Fig. 12

Modified from Koděra et al. (2014). Data for Biely Vrch, Kráľová, Slatinské Lazy, and Beluj Sm inclusions from Koděra et al. 2015b. Data for Grasberg Hp inclusions from Mernagh and Mavrogenes (2019)

Similar content being viewed by others

References

  • Baker T, Bickford D, Juras S, Lewis P, Oztas Y, Ross K, Tukac A, Rabayrol F, Miskovic A, Friedman R, Creaser RA, Spikings R (2016) The geology of the Kişladağ porphyry gold deposit, Turkey. Economic Geol Special Publication 19:57–83

    Google Scholar 

  • Banks DA, Bozkaya G, Bozkaya O (2019) Direct observation and measurement of au and ag in epithermal mineralizing fluids. Ore Geol Rev 111:102955

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  CAS  Google Scholar 

  • Bodnar RJ (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, Fluids and Ore Deposits: Mineralogical Association of Canada, Short Course Series Volume 23, pp 139–152

  • Bodnar RJ (2003a) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: Analysis and Interpretation: Mineralogical Association of Canada, Short Course Series Volume 32, pp 1–8

  • Bodnar RJ (2003b) Re-equilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions: Analysis and Interpretation: Mineralogical Association of Canada, Short Course Series Volume 32, pp 213–230

  • Bodnar RJ, Cline J (2010) A group of papers on fluid inclusion research applied to ore deposits: an introduction. Econ Geol 105:325–327

    Article  CAS  Google Scholar 

  • Botcharnikov RE, Linnen RL, Wilke M, Holtz F, Jugo PJ, Berndt J (2011) High gold concentrations in sulfide-bearing magma under oxidizing conditions. Nat Geosci 4:112–115. https://doi.org/10.1038/ngeo1042

  • Cathles LM (1991) The importance of the 350°C isotherm in ore-forming hydrothermal systems. Geological Society of America, Annual Meeting, Abstracts with Programs 23, p. A21

  • Chiaradia M (2020) Gold endowments of porphyry deposits controlled by precipitation efficiency. Nat Commun 11:1–10

    Article  Google Scholar 

  • Clark AH, Arancibia ON (1995) The occurrence, paragenesis and implications of magnetite-rich alteration-mineralization in calc-alkaline porphyry copper deposits. In Clark AH (ed) Giant ore deposits-II, Controls on the scale of orogenic magmatic-hydrothermal mineralization. QMinEx Workshop, Kingston, Ontario, Queen’s University, Department of GeologicalSciences, April 25–27, 1995, pp 511–581

  • DeCelles PG, Carrapa B, Horton BK, McNabb J, Gehrels GE, Boyd J (2015) The Miocene Arizaro Basin, central Andean hinterland: response to partial lithosphere removal. Geodynamics of a Cordilleran Orogenic System: the Central Andes of Argentina and Northern Chile. Geol Soc Am Mem 212:359–386

    Google Scholar 

  • Desanois L, Lüders V, Niedermann S, Trumbull RB (2019) Formation of epithermal Sn-Ag-(Zn) vein-type mineralization at the Pirquitas deposit, NW Argentina: fluid inclusion and noble gas isotopic constraints. Chem Geol 508:78–91

    Article  CAS  Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I: correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901

    Article  CAS  Google Scholar 

  • Fournier RO (1985) The behavior of silica in hydrothermal solutions. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems, Reviews in Economic Geology 2:45–61

  • Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1211

    Article  CAS  Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20

    Article  CAS  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology Short Course 31, pp. 199

  • Grishina S, Koděra P, Uriarte LM, Dubessy J, Oreshonkov A, Goryainov S, Šimko F, Yakovlev I, Roginskii EM (2018) Identification of anhydrous CaCl2 and KCaCl3 in natural inclusions by Raman spectroscopy. Chem Geol 493:532–543

    Article  CAS  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) Appendix (A6) of the MAC short course 40: SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogenous materials and inclusions. Min Ass Can Short C 40:328–333

    CAS  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Article  CAS  Google Scholar 

  • Gustafson LB, Quiroga J (1995) Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile. Econ Geol 90:2–16

    Article  CAS  Google Scholar 

  • Halter WE, Pettke T, Heinrich CA (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science 296:1844–1846

    Article  CAS  Google Scholar 

  • Halter WE, Heinrich CA, Pettke T (2005) Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions. Min Depos 39:845–863

    Article  CAS  Google Scholar 

  • Hanes R, Bakos F, Fuchs P, Žitňan P, Konečný V (2010) Exploration results of au porphyry mineralizations in the Javorie Stratovolcano. Mineralia Slovaca 42:15–32

    CAS  Google Scholar 

  • Harris AC, Kamenetsky VS, White NC, van Achterbergh E, Ryan CG (2003) Melt inclusions in veins: linking magmas and porphyry Cu deposits. Science 302(5653):2109–2111

    Article  CAS  Google Scholar 

  • Heinrich CA (2007) Fluid-fluid interactions in magmatic-hydrothermal ore formation. In: Liebscher A, Heinrich CA (eds) Fluid-fluid interactions, Reviews in Mineralogy and Geochemistry 65:363–387

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ Geol 102:1021–1045

    Article  CAS  Google Scholar 

  • Koděra P, Heinrich CA, Walle M, Lexa J (2014) Magmatic salt melt and vapor: Extreme fluids forming porphyry gold deposits in shallow subvolcanic settings. Geology 42:495–498

    Article  Google Scholar 

  • Koděra P, Takács A, Váczi T, Luptáková J, Antal P (2015a) Mineral composition of salt melt inclusions of the porphyry gold deposit Biely Vrch (Slovakia) [Ext. Abs.]: XXIII ECROFI conference, Leeds, UK, pp 86–87

  • Koděra P, Lexa J, Jánošík M, Brčeková J, Biroň A, Wälle M, Fallick AE, Kozák J, Žitňan J Hydrothermal alteration of Au-porphyry systems in the Central Slovakia Volcanic Field and its relationship to the evolution of associated paleofluids. In: Collection of contributions from the conference Geochémia 2015, State Geological Institute of D., Štúr (2015b) Bratislava, Slovakia, pp 89–92. ISBN 978-80-8174-015-2 (in Slovak)

  • Koděra P, Takács A, Racek M, Simko F, Luptakova J, Vaczi T, Antal P (2017) Javorieite, KFeCl3: a new mineral hosted by salt melt inclusions in porphyry gold systems. Eur J Mineral 29:995–1004

    Article  Google Scholar 

  • Koděra P, Kozák J, Brčeková J, Chovan M, Lexa J, Jánošík M, Biron A, Uhlík P, Bakos F (2018) Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia. Miner Deposita 53:1193–1212

    Article  Google Scholar 

  • Kouzmanov K, Pokrovski GS (2012) Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Special Publication Soc Economic Geol 16:573–618

    Google Scholar 

  • Kozák J, Koděra P, Lexa J, Bakos F, Molnár L, Wälle M (2017) Porphyry gold system of Beluj in the mantle of the Štiavnica stratovolcano (Slovakia). Acta Geologica Slovaca 9:45–61

    Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in Mineralogical Crystallography, Berlin, Germany, De Gruyter, pp 1–30

  • Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB, Einaudi MT, Kunze K (2005) Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the Bingham porphyry. Earth Planet Sci Lett 235(1–2):229–243

  • Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA (2010) The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ Geol 105:91–118

    Article  CAS  Google Scholar 

  • Lecumberri-Sanchez P, Steele-MacInnis M, Bodnar RJ (2012) A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochim Cosmochim Acta 92:14–22

    Article  CAS  Google Scholar 

  • Li Y, Audétat A, Lerchbaumer L, Xiong XL (2009) Rapid na, Cu exchange between synthetic fluid inclusions and external aqueous solutions: evidence from LA-ICP‐MS analysis. Geofluids 9(4):321–329

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Evans NJ, Zhao JX, Yue YH, Xie J (2018) Volatile variations in magmas related to porphyry Cu-Au deposits: insights from amphibole geochemistry, Duolong district, central Tibet. Ore Geol Rev 95:649–662

    Article  Google Scholar 

  • Liang HY, Sun W, Su WC, Zartman RE (2009) Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596

    Article  CAS  Google Scholar 

  • Lodder C, Padilla R, Shaw R, Garzón T, Palacios E, Jahoda R (2010) Discovery history of the La Colosa gold porphyry deposit, Cajamarca, Colombia. Economic Geol Special Publication 15:9–28

    Google Scholar 

  • Mavrogenes JA, Bodnar RJ (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. Geochim Cosmochim Acta 58:141–148

    Article  CAS  Google Scholar 

  • Maydagán L, Franchini M, Rusk B, Lentz DR, McFarlane C, Impiccini A, Ríos FJ, Rey R (2015) Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis. Econ Geol 110:889–923

    Article  Google Scholar 

  • McLeish DF, Williams-Jones AE, Vasyukova OV, Clark JR, Board WS (2021) Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature. Proc Natl Acad Sci USA 118, e2100689118

  • Mernagh TP, Mavrogenes J (2019) Significance of high temperature fluids and melts in the Grasberg porphyry copper gold deposit. Chem Geol 508:210–224

    Article  CAS  Google Scholar 

  • Mernagh TP, Leys C, Henley RW (2020) Fluid inclusion systematics in porphyry copper deposits: the super-giant Grasberg deposit, Indonesia, as a case study. Ore Geol Rev 123:103570

    Article  Google Scholar 

  • Muntean JL, Einaudi MT (2000) Porphyry gold deposits of the Refugio district, Maricunga belt, northern Chile. Econ Geol 95:1445–1472

    Article  CAS  Google Scholar 

  • Muntean JL, Einaudi MT (2001) Porphyry-epithermal transition: Maricunga belt, northern Chile. Econ Geol 96:743–772

    Article  CAS  Google Scholar 

  • Murakami H, Seo JH, Heinrich CA (2010) The relation between Cu/Au ratio and formation depth of porphyry-style Cu–Au ± Mo deposits. Miner Deposita 45:11–21

    Article  CAS  Google Scholar 

  • Newton RC, Manning CE (2005) Solubility of anhydrite, CaSO4, in NaCl–H2O solutions at high pressures and temperatures: applications to fluid–rock interaction. J Petrol 46(4):701–716

    Article  CAS  Google Scholar 

  • Petrella L, Thébaud N, Fougerouse D, Evans K, Quadir Z, Laflamme C (2020) Colloidal gold transport, a key to high-grade gold mineralization? Min Depos 55:1247–1254

    Article  CAS  Google Scholar 

  • Pintea I (2023) The magmatic immiscibility between silicate-, brine-, and Fe-S-O melts from the porphyry (Cu-Au-Mo) deposits in the carpathians (Romania): a review. Roman J Earth Sci 89:1–33

    Google Scholar 

  • Pokrovski GS, Akinfiev NN, Borisova AY, Zotov AV, Kouzmanov K (2014) Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling. In: Garofalo PS, Ridley JR (eds) Gold-transporting hydrothermal fluids in the Earth’s crust. Geological Society, London, pp 9–70. Special Publications, v. 402

    Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26

    Article  Google Scholar 

  • Robelin C, Chartrand P, Pelton AD (2004) Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system. J Chem Thermodyn 36:809–828

    Article  CAS  Google Scholar 

  • Roedder E (1984) Fluid Inclusions. In: Ribbe PH (ed) Reviews in Mineralogy: Mineralogical Society America, v. 12, pp 644. https://doi.org/10.1515/9781501508271

  • Rottier B, Kouzmanov K, Bouvier AS, Baumgartner LP, Wälle M, Rezeau H, Bendezú R, Fontboté L (2016) Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic-hydrothermal transition (Cerro De Pasco district, Peru). Chem Geol 447:93–116

    Article  CAS  Google Scholar 

  • Rottier B, Audétat A, Koděra P, Lexa J (2019) Origin and evolution of magmas in the porphyry Au-mineralized Javorie volcano (central Slovakia): evidence from thermobarometry, melt inclusions and sulfide inclusions. J Petrol 60:2449–2482

    Article  CAS  Google Scholar 

  • Rusk BG, Reed MH, Dilles JH, Klemm LM, Heinrich CA (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chem Geol 210:173–199

    Article  CAS  Google Scholar 

  • Rusk BG, Reed MH, Dilles JH (2008) Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ Geol 103:307–334

    Article  CAS  Google Scholar 

  • Sillitoe RH (2000) Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. Reviews Economic Geol 13:315–345

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  CAS  Google Scholar 

  • Sillitoe RH (2017) Gold-rich porphyry deposits: types, settings, controls, and potential. In: Mineral Resources to Discover. Proc 14th SGA Biennial Meeting, Québec City, 1, pp 11–14

  • Sillitoe RH, Perelló J (2023) Exploration Guides for High-Grade Hypogene Porphyry Copper deposits. SEG Newsletter, pp 13–25. 135

  • Simón V, Arnosio M, Trumbull RB, Caffe P, Rocholl A, Sudo M, Lucassen F, Huidrobro F (2021) Geology, geochemistry and geochronology of Lindero porphyry gold deposit in the Southern Puna plateau, Argentina. J S Am Earth Sci 105:103047

    Article  Google Scholar 

  • Soloviev SG, Kryazhev SG, Dvurechenskaya SS, Vasyukov VE, Shumilin DA, Voskresensky KI (2019) The superlarge Malmyzh porphyry Cu-Au deposit, Sikhote-Alin, eastern Russia: igneous geochemistry, hydrothermal alteration, mineralization, and fluid inclusion characteristics. Ore Geol Rev 113:103112

    Article  Google Scholar 

  • Stavast WJ, Keith JD, Christiansen EH, Dorais MJ, Tingey D, Larocque A, Evans N (2006) The fate of magmatic sulfides during intrusion or eruption, Bingham and tintic districts, Utah. Econ Geol 101:329–345

    Article  CAS  Google Scholar 

  • Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HOKIEFLINCS_H2O-NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Comput Geosci 49:334–337

    Article  Google Scholar 

  • Sterner SM, Bodnar RJ (1984) Synthetic fluid inclusions in natural quartz I. compositional types synthesized and applications to experimental geochemistry. Geochim Cosmochim Acta 48:2659–2668

    Article  CAS  Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions V. solubility relations in the system NaCl–KCl–H2O under vapor-saturated conditions. Geochim Cosmochim Acta 52:989–1006

    Article  CAS  Google Scholar 

  • Ulrich T, Günther D, Heinrich CA (2002) The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo De La Alumbrera, Argentina. Econ Geol 97:1889–1920

    Article  CAS  Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Article  Google Scholar 

  • Vila T, Sillitoe RH (1991) Gold-rich porphyry systems in the Maricunga belt, northern Chile. Econ Geol 86:1238–1260

    Article  CAS  Google Scholar 

  • Vila T, Sillitoe RH, Betzhold J, Viteri E (1991) The porphyry gold deposit at Marte, northern Chile. Econ Geol 86:1271–1286

    Article  CAS  Google Scholar 

  • Weis P, Driesner T, Heinrich CA (2012) Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338(6114):1613–1616

    Article  CAS  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geol 100th Anniversary Special Paper 100:1287–1312

    CAS  Google Scholar 

  • Xiao Q, Zhou T, Hollings P, Wang S, Liu J, Yang Q, Yuan F (2021) Mineral and whole-rock chemistry of the Chating porphyry Cu-Au deposit related intrusions in the Middle-Lower Yangtze River Belt, Eastern China: implications for magma evolution and mineralization. Lithos 380:105881

    Article  Google Scholar 

  • Xu X, Xu X, Szmihelsky M, Yan J, Xie Q, Steele-MacInnis M (2023) Melt inclusion evidence for limestone assimilation, calc-silicate melts, and magmatic skarn. Geology 51:491–495

    Article  CAS  Google Scholar 

  • Zhou L, Mernagh TP, Li Y, Mo B, Lin X, Zhang L, Li A, Leys C (2022) Combined focused Ion Beam – scanning Electron microscope and Synchrotron X-ray fluorescence analysis of multi-solid and melt inclusions from the super-giant Grasberg Cu–Au deposit, Indonesia. J Geoch Expl 243:107108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This contribution was made possible by the support of FORTUNA SILVER MINES INC. and their local subsidiary MANSFIELD MINERA S.A., both for funding the field costs and for allowing this research to be published. This study was carried out in collaboration with the StRATEGy – International Research Training Group IGK2018 program funded by the Deutsche Forschungsgemeinschaft (DFG), Germany and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina (Project A.4.2). Support by the VEGA grant 1/0313/20 is also acknowledged. We would like to thank Guadalupe Arzadún and Raúl Becchio for their help to perform Raman spectroscopy. V. Simón especially thanks to Matias Barrionuevo for the support and help received during her research stay in Germany. She also thanks Florencia Reckziegel for her help in the geostatistical treatment of the data. We are grateful to A. van der Kerkhof, J. Chang, A.E.C. Mercer, and G. Beaudoin for providing reviews and editorial comments that significantly improved the manuscript.

Funding

The research leading to these results received funding from StRATEGy – International Research Training Group IGK2018 program funded by the Deutsche Forschungsgemeinschaft (DFG), Germany and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina (Project A.4.2). Partial financial support was received from FORTUNA SILVER MINES INC. and their local subsidiary MANSFIELD MINERA SA., and from VEGA grant 1/0313/20.

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute to the study conception and design. Material preparation, data collection, and analysis were performed by Valeria Simón, Louis Desanois, Marta Sośnicka, Cora Wohlgemuth-Ueberwasser, and Marcelo Arnosio. The first draft of the manuscript was written by Valeria Simón and Peter Koděra, and all authors commented on subsequent versions of the manuscript. All authors read and approved the final manuscript, that is based on the Ph.D. thesis of Valeria Simón.

Corresponding author

Correspondence to Valeria Simόn.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Editorial handling: C. N. Mercer.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simόn, V., Koděra, P., Lüders, V. et al. Fluid evolution of the Lindero porphyry gold deposit, NW Argentina: the critical role of salt melts in ore formation. Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01275-2

Keywords

Navigation