Skip to main content
Log in

Fluid evolution of the Hub Stock, Horní Slavkov–Krásno Sn–W ore district, Bohemian Massif, Czech Republic

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Horní Slavkov–Krásno Sn–W ore district is hosted by strongly altered Variscan topaz–albite granite (Krudum granite body) on the northwestern margin of the Bohemian Massif. We studied the fluid inclusions on greisens, ore pockets, and ore veins from the Hub Stock, an apical expression of the Krudum granite. Fluid inclusions record almost continuously the post-magmatic cooling history of the granite body from ∼500 to <50°C. Rarely observed highest-temperature (∼500°C) highest-salinity (∼30 wt.% NaCl eq.) fluid inclusions are probably the result of secondary boiling of fluids exsolved from the crystallizing magma during pressure release which followed hydraulic brecciation of the gneissic mantle above the granite cupola. The greisenization was related to near-critical low-salinity (0–7 wt.% NaCl eq.) aqueous fluids with low amount of CO2, CH4, and N2 (≤10 mol% in total) at temperatures of ∼350–400°C and pressures of 300–530 bar. Crush-leach data display highly variable and negatively correlated I/Cl and Br/Cl values which are incompatible with both orthomagmatic and/or metamorphic origin of the fluid phase, but can be explained by infiltration of surficial and/or sedimentary fluids. Low fluid salinity indicates a substantial portion of meteoric waters in the fluid mixture that is in accordance with previous stable isotope data. The post-greisenization fluid activity associated with vein formation and argillitization is characterized by decreasing temperature (<350 to <50°C), decreasing pressure (down to ∼50–100 bar), and mostly also decreasing salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Audétat A, Pettke T, Heinrich ChA, Bodnar RJ (2008) The composition of magmatic–hydrothermal fluids in barren and mineralized intrusions. Econ Geol 103:877–908

    Article  Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. New computer programs for the analysis of fluid inclusion data and for modeling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789

    Article  Google Scholar 

  • Beran P, Sejkora J (2006) The Krásno Sn–W ore district near Horní Slavkov: mining history, geological and mineralogical characteristics. J Czech Geol Soc 51:3–42

    Article  Google Scholar 

  • Beran P, Jangl L, Majer J, Suček P, Wagenbreuth O (1996) 1000 years of tin mining in the Slavkovský les Mts. Okresní muzeum Sokolov, Sokolov (in Czech)

    Google Scholar 

  • Bischoff JL, Rosenbauer RJ, Fournier RO (1996) The generation of HCl in the system CaCl2–H2O: vapor–liquid relations from 380–500°C. Geochim Cosmochim Acta 60:7–16

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Acta 57:683–684

    Article  Google Scholar 

  • Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid inclusion systematics in epithermal systems. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2:73-98

  • Bottrell SH, Yardley BWD, Buckley F (1988) A modified crush-leach method for analysis of fluid inclusion electrolytes. Bull Mineral 111:279–290

    Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 47:1247–1275

    Article  Google Scholar 

  • Breiter K, Förster H-J, Seltmann R (1999) Variscan silicic magmatism and related tin–tungsten mineralization in the Erzgebirge–Slavkovský les metallogenic province. Miner Deposita 34:505–521

    Article  Google Scholar 

  • Brown PE (1989) FLINCOR: a fluid inclusion data reduction and exploration program (abstr.). Second biennial Pan-American conference on research on fluid inclusions, program with abstracts:14

  • Dolejš D, Štemprok M (2001) Magmatic and hydrothermal evolution of Li–F granites: Cínovec and Krásno intrusions, Krušné hory batholith, Czech Republic. Bull Czech Geol Surv 76:77–99

    Google Scholar 

  • Dolníček Z, Fojt B, Prochaska W, Kučera J, Sulovský P (2009) Origin of the Zálesí U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Miner Deposita 44:81–97

    Article  Google Scholar 

  • Dykyj J, Hemala M, Roubal M, Vlasáková L (1953) The physico-chemical tables, part 1. Stát Nakl Tech Lit, Prague (in Czech)

    Google Scholar 

  • Fehn U, Snyder GT (2005) Residence times and source ages of deep crustal fluids: interpretation of 129I and 36Cl results from the KTB-VB drill site, Germany. Geofluids 5:42–51

    Article  Google Scholar 

  • Frape SK, Fritz P (1987) Geochemical trends from groundwaters from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline waters and gases in crystalline rocks. Geol Assoc Canada Spec Pap 33, pp 19–38

  • Gorbaty YE, Bondarenko GV (1998) The physical state of supercritical fluids. J Supercrit Fluids 14:1–8

    Article  Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol 85:457–481

    Article  Google Scholar 

  • Hoffmann CF, Henley RW, Higgins NC, Solomon N, Summons RE (1988) Biogenic hydrocarbons in fluid inclusions from the Aberfoyle tin–tungsten deposit, Tasmania, Australia. Chem Geol 70:287–299

    Article  Google Scholar 

  • Hurai V, Kihle J, Kotulová J, Marko F, Świerczewska A (2002) Origin of methane in quartz crystals from the Tertiary accretionary wedge and fore-arc basin of the Western Carpathians. Appl Geoch 17:1259–1271

    Article  Google Scholar 

  • Irwin JJ, Roedder E (1995) Diverse origins of fluid in magmatic inclusions at Bingham (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall, UK), and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochim Cosmochim Acta 59:295–312

    Article  Google Scholar 

  • Jarchovský T (2006) The nature and genesis of greisen stocks at Krásno, Slavkovský les area—Western Bohemia, Czech Republic. J Czech Geol Soc 51:201–216

    Article  Google Scholar 

  • Johnson LH, Burgess R, Turner G, Milledge HJ, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64:717–732

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001) Noble gas and halogen evidence on the origin of Cu–Porphyry mineralising fluids. Geochim Cosmochim Acta 65:2651–2668

    Article  Google Scholar 

  • Kendrick MA, Duncan R, Phillips D (2006) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa, Australia. Chem Geol 235:325–351

    Article  Google Scholar 

  • Klemm W (1994) Chemical evolution of hydrothermal solutions during Variscan and post-Variscan mineralization in Erzgebirge, Germany. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collisional orogens. Czech Geological Survey, Prague, pp 150–158

    Google Scholar 

  • Knight CL, Bodnar RJ (1989) Synthetic fluid inclusions. IX. Critical PVTX properties of NaCl–H2O solutions. Geochim Cosmochim Acta 53:3–8

    Article  Google Scholar 

  • Košatka M (1988) Geological evolution of the Hub stock, central part on the Krásno ore deposit. MSc. thesis, Charles University Prague

  • Kučera J, Muchez Ph, Slobodník M, Prochaska W (2010) Geochemistry of highly saline fluids in the Moravo–Silesian Paleozoic siliciclastic sequences: genetic implications. Int J Earth Sci 99:269–284

    Article  Google Scholar 

  • Lüders V, Banks DA, Halbach P (2002) Extreme Cl/Br and δ37Cl isotope fractionation in fluids of modern submarine hydrothermal systems. Miner Deposita 37:765–771

    Article  Google Scholar 

  • Müller A, René M, Behr H-J, Kronz A (2003) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub stock (Slavkovský Les Mts., Czech Republic). Miner Petrol 79:167–191

    Article  Google Scholar 

  • Pitzer KS, Pabalan RT (1986) Thermodynamics of NaCl in steam. Geochim Cosmochim Acta 50:1445–1454

    Article  Google Scholar 

  • Polya DA, Foxford KA, Stuart F, Boyce A, Fallick AE (2000) Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W–Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochim Cosmochim Acta 64:3357–3371

    Article  Google Scholar 

  • René M (1998) Development of topaz-bearing granites of the Krudum massif (Karlovy Vary pluton). Acta Univ Carol Geol 42:103–109

    Google Scholar 

  • René M, Škoda R (2011) Nb–Ta–Ti oxides fractionation in rare-metal granites: Krásno–Horní Slavkov ore district, Czech Republic. Miner Petrol 103:37–48

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–644

    Article  Google Scholar 

  • Romer RL, Thomas R, Stein HJ, Rhede D (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Deposita 42:337–359

    Article  Google Scholar 

  • Schmidt C, Bodnar RJ (2000) Synthetic fluid inclusions: XVI. PVTX properties in the system H2O–NaCl–CO2 at elevated temperatures, pressures, and salinities. Geochim Cosmochim Acta 64:3853–3869

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow and London

    Google Scholar 

  • Slobodník M, Jacher-Śliwczyńska K, Taylor MC, Schneider J, Dolníček Z (2008) Plumbotectonic aspects of polymetallic vein mineralization in Paleozoic sediments and Proterozoic basement of Moravia (Czech Republic). Int J Earth Sci 97:1–18

    Article  Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl–H2O under vapor saturated conditions. Geochim Cosmochim Acta 52:989–1005

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Banks DA, Austerheim H (2001) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J Metamorph Geol 19:165–178

    Article  Google Scholar 

  • Thiéry R, van den Kerkhof AM, Dubessy J (1994) VX properties of CH4–CO2 and CO2–N2 fluid inclusions: modeling for T <31°C and P <400 bars. Eur J Mineral 6:753–771

    Google Scholar 

  • Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn–Wolfram-Mineralisationen des Erzgebirges. Freib Forsch C370:85, + XVI plates

    Google Scholar 

  • Thomas R (1994) Fluid evolution in relation to the emplacement of the Variscan granites in the Erzgebirge region: a review of the melt and fluid inclusion evidence. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collisional orogens. Czech Geological Survey, Prague, pp 150–158

    Google Scholar 

  • Thomas R (2002) Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy. Am Mineral 87:56–68

    Google Scholar 

  • Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile content and entrapment conditions. J Petrol 38:1753–1765

    Article  Google Scholar 

  • Thomas R, Förster H-J, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin–granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601

    Article  Google Scholar 

  • Webster J, Thomas R, Förster H-J, Seltmann R, Tappen Ch (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany. Miner Deposita 39:452–472

    Article  Google Scholar 

  • Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions. Chem Geol 64:335–350

    Article  Google Scholar 

  • Zherebtsova IK, Volkova NN (1966) Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine. Geochem Int 3:656–670

    Google Scholar 

Download references

Acknowledgments

The fluid inclusion study of the Horní Slavkov–Krásno deposit was supported by the project GAČR 205/09/0540. The detailed comments by two journal reviewers (A. M. van den Kerkhof and R. Thomas) and editor (B. Lehmann) helped to improve the initial draft of the manuscript. Special thank is due to R. Thomas for providing unpublished Raman data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Dolníček.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Results of microthermometric measurements of aqueous fluid inclusions from Hub Stock. The temperature parameters are in degrees Celsius (°C), salinity in weight percent (wt.%) NaCl eq. (PDF 28 kb)

Table 2

Results of microthermometric measurements of vapor-rich S3 fluid inclusions that display condensation of carbonic phase during cooling. The temperature parameters are in degrees Celsius (°C). (PDF 16 kb)

Table 3

Crush-leach data on fluid inclusions from Hub Stock. The analyte concentrations are in parts per billion (ppb). Molar ratios and charge balance Q+/Q (sum of positive charges/sum of negative charges) are also visualized. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolníček, Z., René, M., Prochaska, W. et al. Fluid evolution of the Hub Stock, Horní Slavkov–Krásno Sn–W ore district, Bohemian Massif, Czech Republic. Miner Deposita 47, 821–833 (2012). https://doi.org/10.1007/s00126-012-0400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-012-0400-0

Keywords

Navigation