Skip to main content
Log in

Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and Órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, Órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Details about the methods and software used can be obtained upon request from the third author. Interested readers are also referred to Laing (1977).

  2. More data and discussion of Geochronology in: Dallmeyer et al. 1997; Arenas et al. 2007; Castroviejo et al. 2006.

References

  • Almodóvar GR, Sáez R, Pons JM, Maestre A, Toscano M, Pascual E (1998) Geology and genesis of the Aznalcóllar massive sulphide deposit, Iberian Pyrite Belt, Spain. Miner Deposita 33:111–136

    Google Scholar 

  • Arenas R (1991) Opposite P, T, t paths of Hercynian metamorphism between the upper units of the Cabo Ortegal Complex and their substratum (NW of the Iberian Massif). Tectonophysics 191:347–394

    Article  Google Scholar 

  • Arenas R, Gil Ibarguchi JI, González Lodeiro F, Martínez Catalán JR, Ortega Gironés E, de Pablo Maciá JG, Peinado M (1986) Tectonostratigraphic units in the complexes with mafic and related rocks of the NW of the Iberian Massif. Hercynica 2:87–110

    Google Scholar 

  • Arenas R, Martínez Catalán JR, Abati J, Sánchez Martínez S (eds) (2007) The rootless Variscan Suture of NW Iberia (Galicia, Spain). Publs. IGME, Madrid, 177 pp

  • Badham JPN, Williams PJ (1981) Genetic and exploration models for sulphide ores in metaophiolites, northwest Spain. Econ Geol 76:2118–2127

    Article  Google Scholar 

  • Barrie CT, Hannington MD (1999) Classification of volcanic-associated massive sulfide deposits based on host-rock composition. SEG Rev Econ Geol 8:1–11

    Google Scholar 

  • Boyle AP, Prior DJ, Banham MH, Timms NE (1998) Plastic deformation of metamorphic pyrite: new evidence from electron-backscatter diffraction and forescatter orientation-contrast imaging. Miner Deposita 34:71–81

    Article  Google Scholar 

  • Castiñeiras P, Arenas R, Martínez Catalán JR, González del Tánago J (2000) Mineral assemblages and P-T constraints in Ky-St-Grt schists from the Arinteiro antiform (Órdenes Complex, NW Iberian Massif). In: Variscan-Appalachian dynamics: the building of the Upper Paleozoic basement. Basement Tectonics 15:81–84

  • Castroviejo R (2002) Genesis and metamorphism of Cyprus-type massive sulphide deposits during Hercynian collision, Cabo Ortegal Complex, NW Iberian Massif (Spain). Proc. 11th Quadrennial IAGOD Symp. and Geocongress 2002, Windhoek, Namibia, p 22 & Ext Abs CD edition

  • Castroviejo R, Gable R, Cueto R, Foucher JC, Soler M, Gounot J, Batsale JC, López A, Joubert M (1996) Ensayo de una metodología innovadora para la detección de masas polimetálicas profundas: modelo geológico y exploración geotérmica preliminares de la Masa Valverde (Huelva). Bol Geol Min 107:485–509

    Google Scholar 

  • Castroviejo R, Armstrong E, Lago A, Martínez Simón JM, Argüelles A (2004a) Geología de las Mineralizaciones de Sulfuros Masivos en los cloritoesquistos de Moeche (Complejo de Cabo Ortegal, La Coruña). Bol Geol Min 115:3–34

    Google Scholar 

  • Castroviejo R, Moreno T, Prichard H, Fallick AE (2004b) Metalogenia de las ofiolitas de Galicia y unidades asociadas (NW del Macizo Ibérico, España). In: Pereira ES, Castroviejo R, Ortiz F (eds) Complejos Ofiolíticos en IBEROAMÉRICA: Guías de Prospección para Metales Preciosos, Proy XIII-1. CYTED, Madrid, pp 231–266. ISBN 84-96023-34-9

    Google Scholar 

  • Castroviejo R, Tassinari C, Proenza J (2006) New data on the ophiolitic VMS deposits of Moeche (Cabo Ortegal Complex, NW Spain). Proc. 12th Quadrennial IAGOD Symp. 2006, Moscow, p 98 & Ext Abs CD

  • Chauvet A, Onézime J, Charvet J, Barbanson L, Faure M (2004) Syn- to late-tectonic emplacement within the Spanish Section of the Iberian Pyrite Belt: structural, textural, and mineralogical constraints in the Tharsis and La Zarza areas. Econ Geol 99:1781–1792

    Article  Google Scholar 

  • Cook N, Halls C, Boyle AP (1993) Deformation and metamorphism of massive sulphides at Sulitjelma, Norway. Mineral Mag 57:67–81

    Article  Google Scholar 

  • Cox SF, Etheridge MA, Hobbs BE (1981) The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ Geol 76:2105–2117

    Article  Google Scholar 

  • Cox R, Ebsworth GB, Forsythe DL (1990) The Wilga base-precious metal deposit, Benambra, Victoria, Australia. Terra Nova 2:262–270

    Article  Google Scholar 

  • Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag 57:3–18

    Article  Google Scholar 

  • Dallmeyer RD, Martínez Catalán JR, Arenas R, Gil Ibarguchi JI, Gutiérrez Alonso G, Farias P, Bastida F, Aller J (1997) Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337

    Article  Google Scholar 

  • de Roo JA, van Staal CR (2003) Sulfide remobilisation and sulfide breccias in the Heath Steele and Brunswick Deposits, Bathurst Mining Camp, New Brunswick. Econ Geol Monogr 11:479–496

    Google Scholar 

  • Doetsch J (1957) Esbozo geoquímico y mineralogenético del criadero de piritas “Las Herrerías”, Puebla de Guzmán (Huelva). Bol IGME 68:227–306

    Google Scholar 

  • Febrel T (1966) Hoja de Calañas (nº 959) y Memoria explicativa, Mapa Geológico de España 1:50 000 (1ª serie). IGME, Madrid, 28 pp and map

  • Febrel T (1971) Yacimientos Minerales. ETSI Minas, Madrid, 187 pp

    Google Scholar 

  • Gable R, Castroviejo R, Cueto R, Foucher JC, Batsale JC (1997a) Geothermics: a new BMS exploration tool. In: Papunen H (ed) Mineral deposits: research and exploration – where do they meet? Balkema, Rotterdam, pp 941–944

    Google Scholar 

  • Gable R, Castroviejo R, Gounot J, Bonnemaison M (eds) (1997b) Innovative geothermal methodology to detect deep blind polymetallic orebodies. Synthesis report for publication (30 june 1997). BRITE EURAM Project BRE2-CT94-AO27, CE/DG XII, Brussels, Belgium, 35 p

  • Gable R, Castroviejo R, Cueto R, Batsale JC, Foucher JC, Soler M, Gounot J, Guerin G, López A (1998) Test of the geothermal method for deep polymetallic ore exploration in Masa Valverde (Huelva). Proc. IV Int. Symp. Polymetallic Sulphides of the Iberian Pyrite Belt. APIMINERAL, Lisbon, Portugal 18–21 January 1998, Comm A-14: 23 pp

  • Gil Ibarguchi JI, Arenas R (1990) Metamorphic evolution of the Allochthonous Complexes from the Northwest of the Iberian Peninsula. In: Dallmeyer RD, Martínez-García E (eds) Pre-Mesozoic geology of Iberia. Springer-Verlag, pp 237–246

  • Goodfellow WD, McCutcheon SR, Peter JM (eds) (2003) Massive sulphide deposits of the Bathurst Mining Camp, New Brunswick and Northern Maine. Econ Geol Monogr 11, 930 pp

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor. A review. Ore Geol Rev 10:95–115

    Article  Google Scholar 

  • Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Brügmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Itturino GJ, Knott R, Ludwig R, Nakamura K, Petersen S, Reysenbach AL, Rona PA, Smith S, Sturz AA, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716

    Article  Google Scholar 

  • Hutchinson RW (1973) Volcanogenic sulphide deposits and their metallogenic significance. Econ Geol 68:1223–1246

    Article  Google Scholar 

  • Iglesias M, Ribeiro ML, Ribeiro A (1983) La interpretación aloctonista de la estructura del noroeste penínsular. In: Geología de España (Libro Jubilar J.M. Ríos), t. I, IGME, Madrid, pp 459–467

  • Jenks WF (1971) Tectonic transport of massive sulfide deposits in submarine volcanic and sedimentary host rocks. Econ Geol 66:1215–1224

    Article  Google Scholar 

  • Jonasson IR, Goodfellow WD (1986) Sedimentary and diagenetic textures, and deformation structures within the sulphide zone of the Howard Pass (XY) Zn-Pb deposit, Yukon and Northwest Territories. In: Morin JA (ed) Mineral Deposits of Northern Cordillera. Canad Inst Mining Metall, Spec 37:51–70

  • Laing WP (1977) Structural interpretation of drill core from folded and cleaved rocks. Econ Geol 72:671–685

    Article  Google Scholar 

  • Large R (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Larocque ACL, Hodgson CJ (1995) Effects of greenschist-facies metamorphism and related deformation on the Mobrun massive sulphide deposit, Québec, Canada. Miner Deposita 30:439–448

    Article  Google Scholar 

  • Leistel JM, Marcoux E, Deschamps Y (1998a) Chert in the Iberian Pyrite Belt. Miner Deposita 33:59–81

    Article  Google Scholar 

  • Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R (1998b) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner Deposita 33:2–30

    Article  Google Scholar 

  • Lydon JW (1992) Volcanogenic massive sulphide deposits. Part 1: a descriptive model. Geosc Can Repr Ser 3:145–153

    Google Scholar 

  • Marignac C, Diagana B, Cathelineau M, Boiron MC, Banks D, Fourcade S, Vallance J (2003) Remobilisation of base metals and gold by Variscan metamorphic fluids in the soutyh Iberian pyrite belt: evidence from the Tharsis VMS deposit. Chem Geol 194:143–165

    Article  Google Scholar 

  • Marshall B, Gilligan LB (1987) An introduction to remobilisation: information from ore-body geometry and experimental considerations. Ore Geol Rev 2:87–131

    Article  Google Scholar 

  • Martínez Catalán JR, Arenas R, Díaz García F, Abati J (1997) Variscan accretionary complex of northwest Iberia: terrane correlation and succession of tectonothermal events. Geology 25(12):1103–1106

    Article  Google Scholar 

  • Martínez Catalán JR, Arenas R, Díaz García F, Abati J (1999) Allochthonous units in the Variscan belt of NW Iberia. In: AK Sinha (ed) Basement tectonics 13:65–68

  • Matte Ph (1986) Tectonics and plate tectonics model for the Variscan Belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  • Matte Ph (1991) Accretionary history and crustal evolution of the Variscan Belt in Western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  • Matte Ph (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128

    Article  Google Scholar 

  • Matte Ph, Ribeiro A (1975) Forme et orientation de l’ellipsoïde de déformation dans la virgation hercynienne de Galicia: relation avec le plissement et hypothèses sur la genèse de l’arc ibéro-armoricain. CR Acad Sci Paris 280:2825–2828

    Google Scholar 

  • McClay KR, Ellis PG (1983a) Deformation and recrystallization of pyrite. Mineral Mag 47:527–538

    Article  Google Scholar 

  • McClay KR, Ellis PG (1983b) Deformation of pyrite. Econ Geol 79:400–403

    Article  Google Scholar 

  • McKee GS (2001) Deformation and ore remobilisation within the Aguas Teñidas Este VMS deposit, Iberian Pyrite Belt. Trans Inst Min Metall 110:B50–B58

    Google Scholar 

  • Munhá J (1990) Metamorphic evolution of the South Portuguese/Pulo do Lobo Zone. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 363–368

    Google Scholar 

  • Munhá J, Oliveira JT, Ribeiro A, Oliveira V, Quesada C, Kerrich R (1986) Beja-Acebuches Ophiolite: characterisation and geodynamic significance. Bol Soc Geol Port 2:31

    Google Scholar 

  • Ohashi R (1920) On the origin of the Kuroko of the Kosaka copper mines, northern Japan. Akita Min Coll J 2:11–18

    Google Scholar 

  • Oliveira JT, Quesada C (1998) A comparison of stratigraphy, structure and paleogeography of the South Portuguese Zone and Southwest England, European Variscides. Annual Conf Ussher Soc 9:141–150

    Google Scholar 

  • Oliveira JT, Horn M, Paproth E (1979) Preliminary note on the stratigraphy of the Baixo Alentejo Flysch group, Carboniferous of southern Portugal, and on the paleogeographic development compared to corresponding units in NW Germany. Comun Serv Geol Port 65:151–168

    Google Scholar 

  • Oliveira JT, Pereira Z, Carvalho P, Pacheco N, Korn D (2004) Stratigraphy of the tectonically imbricated lithological succession of the Neves Corvo mine area, Iberian Pyrite Belt, Portugal. Miner Deposita 39:422–436

    Article  Google Scholar 

  • Pawels H, Tercier-Waeber ML, Arenas M, Castroviejo R, Deschamps Y, Lassin A, Graziottin F, Elorza FJ (2002) Chemical characteristics of groundwater around two massive sulphide deposits in an area of previous mining contamination, Iberian Pyrite Belt, Spain. J Geochem Explor 75:17–41

    Article  Google Scholar 

  • Quesada C (1991) Geological constraints on the Palaeozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif. Tectonophysics 185:225–245

    Article  Google Scholar 

  • Quesada C (1992) Evolución tectónica del Macizo Ibérico: Una historia de crecimiento por acrecencia sucesiva de terrenos durante el Proterozoico superior y el Palaeozoico. In: Gutiérrez Marco JC, Saavedra J, Rábano I (eds) Palaeozoico inferior de Ibero-América. University of Extremadura, Mérida, pp 173–190

    Google Scholar 

  • Quesada C (1996) Estructura del sector español de la Faja Pirítica: implicaciones para la exploración de yacimientos. Bol Geol Min 107:65–78

    Google Scholar 

  • Quesada C (1998) A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt. Miner Deposita 33:31–44

    Article  Google Scholar 

  • Quesada C, Bellido F, Dallmeyer RD, Gil Ibarguchi JI, Oliveira JT, Pérez Estaún A, Ribeiro A, Robardet M, Silva JB (1991) Terranes within the Iberian Massif: correlations with West African Sequences. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-Atlantic correlations. Springer, Berlin, pp 267–293

    Google Scholar 

  • Quesada C, Fonseca P, Munhá J, Oliveira JT, Ribeiro A (1994) The Beja-Acebuches Ophiolite (Southern Iberia Variscan Foldbelt): geological characterisation and geodynamic significance. Bol Geol Min 105:3–49

    Google Scholar 

  • Rambaud F (1969) El sinclinal carbonífero de Rio Tinto (Huelva) y sus mineralizaciones asociadas. Mem IGME 71, 299 p

    Google Scholar 

  • Ramírez Copeiro J, Navarro D (1982). Hoja Geológica Valverde del Camino (nº. 960) y Memoria. MAGNA (Mapa Geológico de España, 1:50.000), IGME, Madrid

  • Ramírez Copeiro J, Rosales F, Maroto S, Bellamy J (1988) Metodología de la Investigación que ha dado lugar al descubrimiento de una nueva masa de sulfuros al SO de Valverde del Camino (Faja Pirítica de Huelva). Proc. VIII Congr. Internac. Minería y Metalurgia, Oviedo, Spain: 24 pp

  • Ramírez Copeiro J, Maroto S, Rosales F, Faura J (1993) Metodología de Investigación de Yacimientos Ocultos bajo el Culm. Experiencia de Masa Valverde. Proc I Symp Sulfuros Polimetálicos de la Faja Pirítica Ibérica, Évora, Portugal, 19 p

  • Relvas JMRS, Barriga FJAS, Pinto A, Ferreira A, Noiva PC, Pacheco N, Noiva P, Barriga G, Baptista R, Carvalho D, Olibeira V, Munhá J, Hutchinson RW (2002) The Neves-Corvo deposit, Iberian pyrite belt, Portugal: impacts and future, 25 years after the discovery. SEG Spec Publ 9:155–176

    Google Scholar 

  • Relvas JMRS, Barriga FJAS, Ferreira A, Noiva PC, Pacheco N, Barriga G (2006) Hydrothermal alteration and mineralization in the Neves-Corvo volcanic hosted massive sulfide deposit, Portugal. I. Geology, mineralogy, and geochemistry. Econ Geol 101:753–790

    Article  Google Scholar 

  • Ribeiro A, Pereira E, Dias R (1990a) Structure in the Northwest of the Iberian Peninsula. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 220–236

    Google Scholar 

  • Ribeiro A, Quesada C, Dallmeyer RD (1990b) Geodynamic evolution of the Iberian Massif. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 399–410

    Google Scholar 

  • Ruiz C, Arribas A, Arribas A Jr (2002) Mineralogy and geochemistry of the Masa Valverde blind massive sulphide deposit, Iberian Pyrite Belt (Spain). Ore Geol Rev 19:1–22

    Article  Google Scholar 

  • Sáez R, Pascual E, Toscano M, Almodóvar GR (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Miner Deposita 34:349–570

    Google Scholar 

  • Sánchez Martínez S, Jeffries T, Arenas R, Fernández-Suárez J, García-Sánchez R (2006) A pre-Rodinian ophiolite involved in the Variscan suture of Galicia (Cabo Ortegal complex, NW Spain). J Geol Soc Lond 163:737–740

    Article  Google Scholar 

  • Schermerhorn LJG (1970) The deposition of volcanics and pyritite in the Iberian Pyrite Belt. Miner Deposita 5:273–279

    Article  Google Scholar 

  • Schermerhorn LJC (1971) An outline stratigraphy of the Iberian Pyrite Belt. Bol Geol Min 82:239–268

    Google Scholar 

  • Silva JB (1989) Estrutura de uma geotransversal da Faixa Piritosa: Zona do Vale do Guadiana. Dissertation, University of Lisbon, 450 pp

  • Silva JB, Oliveira JT, Ribeiro A (1990) Structural outline of the South Portuguese Zone. In: Dallmeyer RD, Martínez García E (eds) Pre-mesozoic geology of Iberia. Springer, Berlin, pp 348–362

    Google Scholar 

  • Simancas JF, Carbonell R, González Lodeiro F, Pérez Estaún A, Juhlin C, Ayarza P, Kashubin A, Azor A, Martínez Poyatos D, Almodóvar GR, Pascual E, Sáez R, Expósito I (2003) The crustal structure of the transpressional Variscan Orogen of SW Iberia: the IBERSEIS deep seismic reflection profile. Tectonics 22:1063–1078

    Article  Google Scholar 

  • Simmons BD (1973) Geology of the Millenbach massive sulphide deposit, Noranda, Quebec. Can Min Metall Bull 166(739):67–78

    Google Scholar 

  • Spry PG, Marshall B, Vokes F (2000) Metamorphosed and metamorphogenic ore deposits. Rev Econ Geol 11, 310 pp

    Google Scholar 

  • Strauss GK (1970) Sobre la geología de la provincial piritífera del suroeste de la Península Ibérica y de sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal). Mem. IGME 77, Madrid, 266 pp

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Article  Google Scholar 

  • Tornos F, González-Clavijo E, Spiro B (1998) The Filón Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt. Miner Deposita 33:150–169

    Article  Google Scholar 

  • Tornos F, Solomon M, Conde C, Spiro BF (2008) Formation of the tharsis massive sulfide deposit, Iberian Pyrite belt: geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214

    Article  Google Scholar 

  • Vokes FM, Craig JR (1993) Post-recrystallisation mobilisation phenomena in metamorphosed stratabound sulphide ores. Mineral Mag 57:19–28

    Article  Google Scholar 

  • Williams D (1962) Further reflections on the origin of the porphyries and ores of Rio Tinto, Spain. Trans Inst Mining Metall 71:265–266

    Google Scholar 

  • Williams PJ (1983a) The Genesis and metamorphism of the Arinteiro-Bama Cu deposits, Santiago de Compostela, Northwestern Spain. Econ Geol 78:1689–1700

    Article  Google Scholar 

  • Williams PJ (1983b) The mineralogy and metamorphism of some gahnite-bearing silicate inclusions in massive sulphides from Fornas, northwest Spain. Mineral Mag 47:233–235

    Article  Google Scholar 

Download references

Acknowledgements

This study has benefited from the authors work for the UE/Brite Euram Projects Innovative Geothermal Methodology to detect deep blind polymetallic orebodies (no. BE-8227-93, 1994/97, Contract BRE2-CT94-1027), and Development of a methodology for detecting deep metal ore deposits through physico-chemical analysis of fluids in shallow boreholes (no. BE96-3162, 1998/2000, contract BRPR-CT97-0374). Our co-workers in these projects are thankfully acknolewdged. L Sánchez, C León and H Romero (ETSI Minas, UPM), and Mª José Torres Matilla (IGME) helped draft some figures. Chemical analyses were provided by EN Adaro. Other laboratory work for this paper was carried out in the Laboratorio de Microscopía Aplicada y Análisis de Imagen (rla 207) of the Madrid School of Mines, Universidad Politécnica de Madrid, with funding through the Laboratory Network of the Comunidad de Madrid (code UP0644) and through projects GR92-0135, UE95-0007, UE98-0027, and CGL2006-13688-C02-01. The thorough and insightful comments and suggestions from the reviewers, Ron Berry and Howard Poulsen, from the issue editor, Rodney Allen, and from the Editor-in-Chief of Miner Deposita, Patrick Williams, are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Castroviejo.

Additional information

Editorial handling: P. Williams

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castroviejo, R., Quesada, C. & Soler, M. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance. Miner Deposita 46, 615–637 (2011). https://doi.org/10.1007/s00126-010-0306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-010-0306-7

Keywords

Navigation