Skip to main content
Log in

Textural variation in the pyrite-rich ore deposits of the Røros district, Trondheim Region, Norway: implications for pyrite deformation mechanisms

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Røros district is a pyrite-rich polymetallic sulfide orefield in the southeastern part of the Trondheim region, Central Norwegian Caledonides. All of the ore deposits at Røros are hosted within a Cambrian to Silurian succession that was deformed and metamorphosed at lower greenschist to lower amphibolite facies conditions during the Caledonian orogeny. Samples from five individual deposits across the orefield have been analyzed using a combination of reflected light petrographic observation, orientation contrast imaging, and electron backscatter diffraction. Results indicate that, whereas samples from each ore deposit have a variety of different textures, all of them preserve plastic deformation in pyrite grains that occurred at peak metamorphic conditions characterized by the development of internal lattice misorientation within pyrite grains and low-angle (∼2°) dislocation walls. These observations indicate that the principal deformation mechanisms at peak metamorphic conditions were dislocation glide and creep. The preservation of brittle fracturing represents later overprinting events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen RL, Weihed P, Blandell D, Crawford T, Davidson G, Galley A, Gibson H, Hannington M, Herrington R, Herzig P, Large R, Lentz D, Maslennikov V, McCutcheon S, Peter J, Tornos F (2002) Global comparisons of volcanic-associated massive sulphide districts. Geological Society Special Publication 204:13–37

    Article  Google Scholar 

  • Atkinson BK (1975) Experimental deformation of polycrystalline pyrite: effects of temperature, confining pressure, strain rate and porosity. Economic Geology 70:473–487

    Article  Google Scholar 

  • Bailie RH, Reid DL (2005) Ore textures and possible sulphide partial melting at Broken Hill, Aggeneys, South Africa I: petrography. S Afr J Geol 108:51–70

    Article  Google Scholar 

  • Barrie CD, Boyle AP, Prior DJ (2007) An analysis of the microstructures developed in experimentally deformed polycrystalline pyrite and minor sulphide phases using electron backscatter diffraction. J Struct Geol 29:1494–1511

    Article  Google Scholar 

  • Barrie CD, Boyle AP, Cox SF, Prior DJ (2008) Slip systems in pyrite: an electron backscatter diffraction (EBSD) investigation. Mineral Mag 72:1147–1165

    Article  Google Scholar 

  • Barrie CD, Boyce AJ, Boyle AP, Williams PJ, Blake K, Ogawara T, Akai J, Prior DJ (2009) Growth controls in colloform pyrite. Am Mineral 94:415–429

    Article  Google Scholar 

  • Bjerkgård T, Sandstad JS, Sturt BA (1999) Massive sulphide deposits in the South-Eastern Trondheim Region Caledonides, Norway: a review. In: Stanley CJ (ed) Mineral deposits: processes to processing: proceedings of the Fifth Biennial SGA meeting. A.A. Balkema, London

    Google Scholar 

  • Boyle AP, Prior DJ, Banham MH, Timms NE (1998) Plastic deformation of metamorphic pyrite: new evidence from electron-backscatter diffraction and forescatter orientation-contrast imaging. Miner Deposita 34:71–81

    Article  Google Scholar 

  • Brown D, McClay KR (1993) Deformation textures in pyrite from the Vangorda Pb-Zn-Ag deposit, Yukon, Canada. Mineral Mag 57:55–66

    Article  Google Scholar 

  • Bryhni I, Andreasson P-G (1985) Metamorphism in the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide orogen, Scandinavia and related areas. Wiley, London, pp 763–781

    Google Scholar 

  • Bugge JAW (1978) In: Bowie SHU, Kvalheim A, Haslam HW (eds) Mineral deposits of Europe: volume 1 Northwest Europe. Institution of Mining and Metallurgy/Mineralogical Society, London, pp 199–249

    Google Scholar 

  • Castroviejo R (1990) Gold ores related to shear zones, west Santa Comba–Fervenza area (Galicia, NW Spain)—a mineralogical study. Miner Deposita 25:42–52

    Article  Google Scholar 

  • Cook NJ (1993) Conditions of metamorphism estimated from alteration lithologies and ore at the Bleikvassli Zn–Pb–(Cu) deposit, Nordland, Norway. Nor Geol Tidsskr 73:226–233

    Google Scholar 

  • Cook NJ (1996) Mineralogy of the sulphide deposits at Sulitjelma, northern Norway. Ore Geol Rev 11:303–338

    Article  Google Scholar 

  • Cook NJ, Chryssoulis SL (1990) Concentrations of invisible gold in the common sulfides. Can Mineral 28:1–16

    Google Scholar 

  • Cook NJ, Ciobanu CL, Mao JW (2009) Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem Geol 264:101–121

    Article  Google Scholar 

  • Cook NJ, Halls C, Boyle AP (1993) Deformation and metamorphism of massive sulphides at Sulitjelma, Norway. Mineral Mag 57:67–81

    Article  Google Scholar 

  • Cox SF (1987) Flow mechanisms in sulphide minerals. Ore Geol Rev 2:133–171

    Article  Google Scholar 

  • Cox SF, Etheridge MA, Hobbs BE (1981) The experimental ductile deformation of polycrystalline and single-crystal pyrite. Econ Geol 76:2105–2117

    Article  Google Scholar 

  • Craig JR (2001) Ore-mineral textures and the tales they tell. Can Mineral 39:937–956

    Article  Google Scholar 

  • Craig JR, Vokes FM (1992) Ore mineralogy of the Appalachian–Caledonian stratabound sulfide deposits. Ore Geol Rev 7:77–123

    Article  Google Scholar 

  • Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag 57:3–18

    Article  Google Scholar 

  • Craig JR, Vokes FM, Solberg TN (1998) Pyrite: physical and chemical textures. Miner Deposita 34:82–101

    Article  Google Scholar 

  • Davis GH, Reynolds SH (1996) Structural geology of rocks and regions. Wiley, New York

    Google Scholar 

  • Etheridge MA, Wall VJ, Vernon RH (1983) The role of the fluid phase during regional metamorphism and deformation. J Metamorph Geol 1:205–226

    Article  Google Scholar 

  • Freitag K, Boyle AP, Nelson E, Hitzman M, Churchill J, Lopez-Pedrosa M (2004) The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: example from the Greens Creek deposit (Alaska). Miner Deposita 39:103–113

    Article  Google Scholar 

  • Gaspar O, Pinto A (1991) The ore textures of the neves-Corvo volcanogenic massive sulphides and their implications for ore beneficiation. Mineral Mag 55:417-422

    Article  Google Scholar 

  • Gee DG, Sturt BA (1985) The Caledonide orogen: Scandinavia and related areas. Wiley, New York

    Google Scholar 

  • Gill GE (1969) Experimental deformation and annealing of sulphides and interpretation of ore textures. Econ Geol 64:500–508

    Article  Google Scholar 

  • Graf JL, Skinner BJ (1970) Strength and deformation of pyrite and pyrrhotite. Econ Geol 65:206–215

    Article  Google Scholar 

  • Graf JL, Skinner BJ, Bras J, Fagot M, Levade C, Couderc JJ (1981) Transmission electron–microscopic observation of plastic-deformation in experimentally deformed pyrite. Econ Geol 76:738–742

    Article  Google Scholar 

  • Grenne T (1987) Marginal basin type metavolcanites of the Hersjo Formation, eastern Trondheim District, Central Norwegian Caledonides. Nor Geol Unders 412:29–42

    Google Scholar 

  • Grenne T, Ihlen PM, Vokes FM (1999) Scandinavian Caledonide metallogeny in a plate tectonic setting. Miner Deposita 34:422–471

    Article  Google Scholar 

  • Hacker BR, Gans PB (2005) Continental collisions and the creation of ultrahigh-pressure terranes: petrology and thermochronology of nappes in the central Scandinavian Caledonides. GSA Bulletin 117:117–134

    Article  Google Scholar 

  • Henning-Michaeli C (1985) Slip along <-311> and <-3–11> on 112 in experimentally deformed chalcopyrite. Fortschr Mineral 63:93

    Google Scholar 

  • Ihlen PM, Grenne T, Vokes FM (1997) Metallogenic evolution of the Scandinavian Caledonides. Trans Inst Min Metall 106:194–203

    Google Scholar 

  • Jansen EM, Siemes H, Brokmeier HG (1998) Crystallographic preferred orientation and microstructure of experimentally deformed Braubach galena ore with emphasis on the relation to diffusional processes. Miner Deposita 34:57–70

    Article  Google Scholar 

  • Mainprice D (1990) An efficent Fortran program to calculate seismic anisotropy from the lattice preferred orientations of minerals. Comput Geosci 16:385–393

    Article  Google Scholar 

  • Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferromagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261

    Article  Google Scholar 

  • Marshall B, Gilligan LB (1987) An introduction to remobilization: information from ore-body geometry and experimental considerations. Ore Geol Rev 2:87–131

    Article  Google Scholar 

  • Marshall B, Gilligan LB (1993) Remobilization, syntectonic processes and massive sulfide deposits. Ore Geol Rev 8:39–64

    Article  Google Scholar 

  • Marshall B, Vokes FM, Larocque ACL (2000) Regional metamorphic remobilisation: upgrading and formation of ore deposits. In: Spry, PG, Marshall, B, Vokes, FM (eds) Metamorphosed and metamorphogenic ore deposits. Reviews in economic geology 16:19–38

  • McCaffrey K, Lonergan L, Wilkinson JJ (1999) Fractures, fluid flow and mineralization Geological Society of London Special Publication. London 155:328

    Google Scholar 

  • McClay KR, Ellis PG (1983) Deformation and recrystallization of pyrite. Mineral Mag 47:527–538

    Article  Google Scholar 

  • McClellan EA (2004) Metamorphic conditions across the Seve-Köli Nappe boundary, southeastern Trondheim region, Norwegian Caledonides: Comparison of garnet-biotite thermometry and amphibole chemistry. Nor J Geol 84:257–282

    Google Scholar 

  • McQueen KG (1987) Deformation and remobilization in some Western Australian nickel ores. Ore Geol Rev 2:269–286

    Article  Google Scholar 

  • Michibayashi K, Mainprice D (2004) The role of pre-existing mechanical anisotropy on shear zone development within oceanic mantle lithosphere: an example from the Oman ophiolite. J Petrol 45:405–414

    Article  Google Scholar 

  • Mookherjee A (1976) Ores and metamorphism: temporal and genetic relationships. Elsevier, Amsterdam

    Google Scholar 

  • Mücke A, Younessi R (1994) Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineral Petrol 50:219–244

    Article  Google Scholar 

  • Nilsen O, Corfu F, Roberts D (2007) Silurian gabbro-diorite-trondhjemite plutons in the Trondheim Nappe Complex, Caledonides, Norway: petrology and U-Pb geochronology. Nor J Geol 87:329–342

    Google Scholar 

  • Nilsen O, Sundvoll B, Roberts D, Corfu F (2003) U-Pb geochronology and geochemistry of trondhjemites and a norite pluton from the SW Trondheim Region, Central Norwegian Caledonides Norges geologiske undersøkelse. Bulletin 441:5–16

    Google Scholar 

  • Nilsson LP, Sturt BA, Ramsay DM (1997) Ophiolitic ultramafites in the Folldal-Røros tract and their Cr-(PGE) mineralisation. Nor Geol Unders 433:10–11

    Google Scholar 

  • Ohfuji H, Boyle AP, Prior DJ, Rickard D (2005) Structure of framboidal pyrite: an electron backscatter diffraction study. Am Mineral 90:1693–1704

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin Heidelberg pp 40-51

  • Prior DJ, Wheeler J, Peruzzo L, Spiess R, Storey C (2002) Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. J Struct Geol 24:999–1011

    Article  Google Scholar 

  • Roberts D, Gee DG (1985) An introduction to the structure of the Scandinavian Caledonides. In: Gee DG, Sturt BA (eds) The Caledonide orogen, Scandinavia and related areas. Wiley, London, pp 55–68

    Google Scholar 

  • Roberts D, Wolff FC (1981) Tectonostratigraphic development of the Trondheim Region Caledonides. J Struct Geol 3:487–494

    Article  Google Scholar 

  • Rui IJ (1972) Geology of the Røros district south-eastern Trondheim region with a special study of the Kjøliskarvene-Holtsjøen area. Nor Geol Tidsskr 52:1–21

    Google Scholar 

  • Rui IJ, Bakke I (1975) Stratabound sulphide mineralization in the Kjøli area, Røros district, Norwegian Caledonides. Nor Geol Tidsskr 55:51–75

    Google Scholar 

  • Siemes H, Zilles D, Cox SF, Merz P, Schafer W, Will G, Schaeben H, Kunze K (1993) Preferred orientation of experimentally deformed pyrite measured by means of neutron-diffraction. Mineral Mag 57:29–43

    Article  Google Scholar 

  • Skauli H, Boyce AJ, Fallick AE (1992) A sulfur isotopic study of the Bleikvassli Zn–Pb–Cu deposit, Nordland, Northern Norway. Miner Deposita 27:284–292

    Google Scholar 

  • Spry PG (2000) Sulfidation and oxidation haloes as guides in the exploration for metamorphosed sulfide ores In: Spry PG, Marshall B, Vokes FM (eds) Metamorphosed and metamorphogenic ore deposits. Reviews in Economic Geology11:149-161

  • Sturt BA, Ramsay DM (2002) Early Ordovician terranne-linkages between oceanic and continental ternes in the central Scandinavian Caledonides. Terra Nova 11:79–85

    Article  Google Scholar 

  • Sturt BA, Ramsay DM, Bjerkgård T (1997) Revisions of the tectonostratigraphy of the Otta-Røros tract. Norges Geol Undersøk Bull 433:8–9

    Google Scholar 

  • Sundblad K, Andersen T, Beckholmen M, Nilsen O (2006) Ordovician Escanaba type VMS deposits in the Scandinavian Caledonides. 27th Nordic Geological Winter Meeting: 156.

  • Vernooij MGC, Brok BD, Kunze K (2006) Development of crystallographic preferred orientations by nucleation and growth of new grains in experimentally deformed quartz single crystals. Tectonophysics 427:35–53

    Article  Google Scholar 

  • Vokes FM (1968) Regional metamorphism of the Paleozoic geosynclinal sulphide ore deposits of Norway. Transactions of the Institute of Mining and Metallurgy 77:53–59

    Google Scholar 

  • Vokes FM (1969) A review of metamorphism of sulphide deposits. Earth-Sci Rev 5:99–143

    Article  Google Scholar 

  • Vokes FM (1976) Caledonian massive sulphide deposits in Scandinavia—a comparative review. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits. Elsevier, Amsterdam, pp 318–329

    Google Scholar 

  • Vokes FM (1988) Latest Proterozoic and Phanerozoic metallogeny in Fennoscandia. In: Zachrisson E (ed) Proceedings of the Seventh Quadrennial IAGOD Symposium. Scheweizerbart, Sweden, pp 41–58

    Google Scholar 

  • Vokes FM, Grenne T, Ihlen PM (2003) Caledonian stratabound base-metal sulphides in Scandinavia. In: Kelly JG, Andrew CJ, Ashton JH, Boland MB, Earls G, Fusciardi L, Stanley G (eds) Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 101–126

    Google Scholar 

  • Wheeler J, Prior DJ, Jiang Z, Spiess R, Trimby PW (2001) The petrological significance of misorientations between grains. Contrib Mineral Petrol 141:109–124

    Google Scholar 

  • Wolff FC (1967) Geology of the Meraker area as a key to the eastern part of the Trondheim region. Nor Geol Unders 254:123–146

    Google Scholar 

  • Xu G (1996) Structural geology of the Dugald River Zn-Pb-Ag deposit, Mount Isa Inlier, Australia. Ore Geol Rev 11:339–361

    Article  Google Scholar 

  • Zhang Y, Wilson CJL (1997) Lattice rotation in polycrystalline aggregates and single crystals with one slip system: a numerical and experimental approach. J Struct Geol 6:875–885

    Article  Google Scholar 

Download references

Acknowledgments

This paper which has been funded by a University of Liverpool studentship forms part of the PhD of C. D. B. John Gilleece is thanked for preparation of the Nye Storwartz specimens. Some samples in this study derive from the Geological Survey of Norway ore database; access to the collection by one of the authors (N. J. C.) at the time of his employment there is gratefully acknowledged. Two anonymous reviewers and the editor Pat Williams are thanked for their constructive suggestions on alterations to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Barrie.

Additional information

Editorial handling: H. Frimmel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrie, C.D., Cook, N.J. & Boyle, A.P. Textural variation in the pyrite-rich ore deposits of the Røros district, Trondheim Region, Norway: implications for pyrite deformation mechanisms. Miner Deposita 45, 51–68 (2010). https://doi.org/10.1007/s00126-009-0261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-009-0261-3

Keywords

Navigation