Skip to main content
Log in

A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds.

Abstract

Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86–15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the ‘Chinese Spring’ wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files or from the corresponding authors upon reasonable request.

Abbreviations

SNS:

Spikelet number per spike

BSA:

Bulked segregant analysis

SNP:

Single-nucleotide polymorphism

RIL:

Recombinant inbred line

KNS:

Kernel number per spike

TKW:

Thousand-kernel weight

QTL:

Quantitative trait loci

KASP:

Kompetitive allele-specific PCR

BLUP:

Best linear unbiased prediction

AD:

Anthesis date

PTN:

Productive tiller number

PH:

Plant height

SL:

Spike length

KL:

Kernel length

SSY:

S849-8/SY95-71 (216 F6 lines including two parents)

SCN:

S849-8/CN16 (217 F6 lines including two parents)

S83:

S849-8/3642 (227 F6 lines including two parents)

References

  • Cao J, Liu K, Song W, Zhang J, Yao Y, Xin M, Hu Z, Peng H, Ni Z, Sun Q, Du J (2021) Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M, Dong J, Wang H, Cai Y, Ma T, Zhou X, Xiao J, Li S, Chen L, Xu H, Zhao C, Wu Y, Sun H, Ji J, Cui F, Qin R (2022) Identification of a major stable QTL for spikelet number in wheat (Triticum aestivum L.) and its genetic effects analysis on yield-related traits. Euphytica 218:96

    Article  CAS  Google Scholar 

  • Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z (2020) Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet 133:1825–1838

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wei J, Tian R, Zeng Z, Tang H, Liu Y, Xu Q, Deng M, Jiang Q, Chen G, Liu Y, Li W, Qi P, Jiang Y, Jiang Y, Tang L, Wei Y, Zheng Y, Lan X, Ma J (2022a) A major quantitative trait locus for wheat total root length associated with precipitation distribution. Front Plant Sci 13:995183

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhao C, Yang Y, Zeng Z, Li W, Liu Y, Tang H, Xu Q, Deng M, Jiang Q, Chen G, Peng Y, Jiang Y, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J (2022b) Identification and validation of a locus for wheat maximum root length independent of parental reproductive environment. Front Plant Sci 13:999414

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z (2022c) A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J 20:920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J, Wang H (2012) QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica 186:177–192

    Article  Google Scholar 

  • Ding P, Mo Z, Tang H, Mu Y, Deng M, Jiang Q, Liu Y, Chen G, Chen G, Wang J, Li W, Qi P, Jiang Y, Kang H, Yan G, Wei Y, Zheng Y, Lan X, Ma J (2022a) A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds. J Integr Agric 21:1551–1562

    Article  CAS  Google Scholar 

  • Ding P, Zhou J, Zhao C, Tang H, Mou Y, Tang L, Deng M, Wei Y, Lan X, Ma J (2022b) Haplotype, genetic effect, geographical distribution and breeding utilization analysis of the wheat spikelet number regulated gene WAPO1. Acta Agron Sinica 48(9):2196–2209 (Chinese version)

    Google Scholar 

  • Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, Han J, Su Q, Ji J, Zhao Z, Tong Y, Li J (2015) QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed 35:24

    Article  Google Scholar 

  • Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J (2021) QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. Theor Appl Genet 134:2079–2095

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Van Ooijen JW, Stam P, Lister C, Dean C (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Hassan MA, Muhammad N, Arshad M, Chen X, Xu Y, Xu H, Ni Q, Liu B, Yang W, Li J (2022) Comparative physiology and transcriptome analysis of young spikes in response to late spring coldness in wheat (Triticum aestivum L.). Front Plant Sci 13:811884

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz A, Byrne P, Reid S, Bratschun S, Haley S, Pearce S (2022) Identification and validation of a QTL for spikelet number on chromosome arm 6BL of common wheat (Triticum aestivum L.). Mol Breed 42:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Wang F, Geng S, Guan J, Tao S, Jia M, Sun G, Wang Z, Wang K, Ye X, Ma J, Liu D, Wei Y, Zheng Y, Fu X, Mao L, Lan X, Li A (2022) The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol J 20:75–88

    Article  CAS  PubMed  Google Scholar 

  • Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson JA, Brown-Guedira G, DeWitt N, Peters Haugrud A, Faris JD, Akhunov E, Bai G, Dubcovsky J (2019) Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor Appl Genet 132:2689–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Deng G, Tang Y, Su Y, Wang J, Cheng J, Yang Z, Qiu X, Pu X, Zhang H, Liang J, Yu M, Wei Y, Long H (2021a) Identification and validation of a novel locus controlling spikelet number in bread wheat (Triticum aestivum L.). Front Plant Sci 12:611106

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, Jing R, Liu X (2021b) Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J 19:1141–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wu S, Huang Y, Ma X, Tan L, Liu F, Lv Q, Zhu Z, Hu M, Fu Y, Zhang K, Gu P, Xie D, Sun H, Sun C (2023) OsMADS17 simultaneously increases grain number and grain weight in rice. Nat Commun 14:3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W, Jiang Q, Chen G, Wei Y, Zheng Y, Liu C, Lan X, Ma J (2018) A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet 131:2439–2450

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tang H, Qu X, Liu H, Li C, Tu Y, Li S, Habib A, Mu Y, Dai S, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Chen G, Li W, Jiang Y, Wei Y, Lan X, Zheng Y, Ma J (2020) A novel major and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol 104:173–185

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang H, Wen F, Bao L, Zhao Z, Zhong Z (2023) Chitooligosaccharide-induced plant stress resistance. Carbohyd Polym 302:120344

    Article  CAS  Google Scholar 

  • Luo W, Ma J, Zhou X-H, Sun M, Kong X-C, Wei Y-M, Jiang Y-F, Qi P-F, Jiang Q-T, Liu Y-X, Peng Y-Y, Chen G-Y, Zheng Y-L, Liu C, Lan X-J (2016) Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of tibetan semiwild wheat (Triticum aestivum ssp. tibetanum). Crop Sci 56:2410–2420

    Article  CAS  Google Scholar 

  • Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X (2019) Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet 132:3155–3167

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S, Liu J, Ding P, Habib A, Mu Y, Tang H, Liu Y, Jiang Q, Chen G, Wang J, Li W, Pu Z, Zheng Y, Wei Y, Kang H, Chen G, Lan X (2020) Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet 133:297–315

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F (2021) WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968

    Article  CAS  PubMed  Google Scholar 

  • Muqaddasi QH, Brassac J, Koppolu R, Plieske J, Ganal MW, Röder MS (2019) TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci Rep 9:13853

    Article  PubMed  PubMed Central  Google Scholar 

  • Pakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U (2019) Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132:3169–3176

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Li C, Liu H, Liu J, Luo W, Xu Q, Tang H, Mu Y, Deng M, Pu Z, Ma J, Jiang Q, Chen G, Qi P, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J (2022) Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theor Appl Genet 135:2849–2860

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Fan T, Chen S, Chen Y, Ou X, Jiang Q, Peng W, Ren Z, Tan F, Luo P, Li Z (2022) Identification and validation of quantitative trait loci for the functional stay green trait in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. Theor Appl Genet 135:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF (2007) Genome-wide analysis of the core DNA replication machinery in the higher plants arabidopsis and rice. Plant Physiol 144:1697–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tang S, Zhan Q, Hou Q, Zhao Y, Zhao Q, Feng Q, Zhou C, Lyu D, Cui L, Li Y, Miao J, Zhu C, Lu Y, Wang Y, Wang Z, Zhu J, Shangguan Y, Gong J, Yang S, Wang W, Zhang J, Xie H, Huang X, Han B (2019) Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nat Commun 10:2982

    Article  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Wolde GM, Trautewig C, Mascher M, Schnurbusch T (2019) Genetic insights into morphometric inflorescence traits of wheat. Theor Appl Genet 132:1661–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang Q, Liu S, Huang S, Mu J, Zeng Q, Huang L, Han D, Kang Z (2017) Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Front Plant Sci 8:653

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Li S, Liu H, Xu Q, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Li W, Pu Z, Habib A, Wei Y, Zheng Y, Lan X, Ma J (2022) Identification and validation of a major QTL for kernel length in bread wheat based on two F3 biparental populations. BMC Genomics 23:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang A, Li B, Xu H, An D (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Xie Q, Xue S, Luo J, Lu J, Kong Z, Wang Y, Zhai W, Lu N, Wei R, Yang Y, Han Y, Zhang Y, Jia H, Ma Z (2019) HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number. Theor Appl Genet 132:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • You J, Liu H, Wang S, Luo W, Gou L, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Peng Y, Tang L, Habib A, Wei Y, Zheng Y, Lan X, Ma J (2021) Spike density quantitative trait loci detection and analysis in tetraploid and hexaploid wheat recombinant inbred line populations. Front Plant Sci 12:796397

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Jiang Y, Yao H, Ran L, Zang Y, Xiong F (2022) Cytological and molecular characteristics of delayed spike development in wheat under low temperature in early spring. Crop J 10:840–852

    Article  Google Scholar 

  • Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q (2016) QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 7:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Gizaw SA, Bossolini E, Hegarty J, Howell T, Carter AH, Akhunov E, Dubcovsky J (2018) Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theor Appl Genet 131:1741–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Qi F, Hu G, Yang Y, Zhang L, Meng J, Han Z, Zhou X, Liu H, Ayaad M, Xing Y (2021) BSA-seq-based identification of a major additive plant height QTL with an effect equivalent to that of Semi-dwarf 1 in a large rice F2 population. Crop J 9:1428–1437

    Article  Google Scholar 

  • Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C-C, Hua W, Liu Z, Chen C, Carver BF, Yan L (2022) TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 376:180–183

    Article  CAS  PubMed  Google Scholar 

  • Zhou S-R, Xue H-W (2020) The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. J Integr Plant Biol 62:847–864

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo MC (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese spring genome assembly. Plant J 107:303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for critical reading and revising this manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (31971937 and 31970243), Natural Science Foundation of Sichuan Province (2022NSFSC1729 and 2023NSFSC0223), the Key Research and Development Program of Sichuan Province (2022ZDZX0014 and 2021YFYZ0002), Sichuan Science and Technology Program (2021YFH0083), and Sichuan Province Science Foundation for Distinguished Young Scholars (2022JDJQ0006). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CHZ finished the study and wrote this manuscript. JGZ participated in field work and analyzed data. CL, JNY and YLL helped with the phenotype measurement and data analysis. HPT, MD, QX, YZZ and QTJ did field work and data analysis. GYC, PFQ, YFJ and JRW collected and analyzed data. WL, ZEP, GDC and YJ helped with data analysis. ZZ, CJL and YLZ revised the manuscript. YMW discussed results and revised the manuscript. JM designed the experiments, guided the entire study, participated in data analysis, wrote and extensively revised this manuscript. All authors participated in the research and approved the final manuscript.

Corresponding authors

Correspondence to Yuming Wei or Jian Ma.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

All experiments and data analyses were conducted in Sichuan. All authors contributed to the study and approved the final version for submission. The manuscript has not been submitted to any other journal.

Additional information

Communicated by Diane E. Mather.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1 Schematic diagram of construction mixed pools

Supplementary file1 (TIF 624 KB)

Fig. S2 Reintegration of genetic map for SSY population with the inclusion of KASP-WAPO1

Supplementary file2 (TIF 3814 KB)

122_2023_4459_MOESM3_ESM.tif

Fig. S3 Analysis of the effect of QSNS.sicau-SSY-7A on agronomic traits. kernel length (KL); thousand-kernel weight (TKW); spike length (SL); plant height (PH); anthesis date (AD); productive tiller number (PTN). ‘+’ and ‘−’ represent homozygous lines carrying ‘S849-8’ and ‘SY95-71’ alleles, respectively. **Significance at the 0.01 probability level. *Significant difference at the 0.05 probability level

Supplementary file3 (TIF 1755 KB)

122_2023_4459_MOESM4_ESM.tif

Fig. S4 Pyramid analysis of the effects of QSNS.sicau-SSY-7A and WAPO1 on other agronomic traits. Kernel length (KL); Spike length (SL); Plant height (PH); Anthesis date (AD); Productive tiller number (PTN). ‘+’ and ‘−’ represent homozygous lines carrying ‘S849-8’ and ‘SY95-71’ alleles, respectively. Differences between the two groups were labeled above the significant levels **Significance at the 0.01 probability level. *Significance at the 0.05 probability level

Supplementary file4 (TIF 2060 KB)

Fig. S5 Analysis of spatiotemporal expression patterns of some genes within the interval

Supplementary file5 (TIF 8028 KB)

Supplementary file6 (DOCX 17 KB)

Supplementary file7 (DOCX 19 KB)

Supplementary file8 (DOCX 16 KB)

Supplementary file9 (DOCX 16 KB)

Supplementary file10 (DOCX 17 KB)

Supplementary file11 (DOCX 19 KB)

Supplementary file12 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhou, J., Li, C. et al. A major QTL simultaneously increases the number of spikelets per spike and thousand-kernel weight in a wheat line. Theor Appl Genet 136, 213 (2023). https://doi.org/10.1007/s00122-023-04459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04459-y

Navigation