Skip to main content
Log in

Identification of genes for seed isoflavones based on bulk segregant analysis sequencing in soybean natural population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 23 March 2023

This article has been updated

Abstract

Key message

We identified four hub genes for isoflavone biosynthesis based on BSA-seq and WGCNA methods and validated that GmIE3-1 positively contribute to isoflavone accumulation in soybean.

Abstract

Soybean isoflavones are secondary metabolites of great interest owing to their beneficial impact on human health. Herein, we profiled the seed isoflavone content by HPLC in 1551 soybean accessions grown in two locations for two years and constructed two extreme pools with high (4065.1 µg g−1) and low (1427.23 µg g−1) isoflavone contents to identify candidate genes involved in isoflavone biosynthesis pathways using bulk segregant analysis sequencing (BSA-seq) approach. The results showed that the average sequencing depths were 50.3× and 65.7× in high and low pools, respectively. A total of 23,626 polymorphic SNPs and 5299 InDels were detected between both pools and 1492 genes with different variations were identified. Based on differential genes in BSA-seq and weighted gene co-expression network analysis (WGCNA), four hub genes, Glyma.06G290400 (designated as GmIE3-1), Glyma.01G239200, Glyma.01G241500, Glyma.13G256100 were identified, encoding E3 ubiquitin-protein ligase, arm repeat protein interacting with ABF2, zinc metallopeptidase EGY3, and dynamin-related protein 3A, respectively. The allelic variation in GmIE3-1 showed a significant influence on isoflavone accumulation. The virus-induced gene silencing (VIGS) and RNAi hairy root transformation of GmIE3-1 revealed partial suppression of this gene could cause a significant decrease (P < 0.0001) of total isoflavone content, suggesting GmIE3-1 is a positive regulator for isoflavones. The present study demonstrated that the BSA-seq approach combined with WGCNA, VIGS and hairy root transformation can efficiently identify isoflavone candidate genes in soybean natural population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The high and low isoflavone pool resequencing data have been submitted to National Genomics Data Center, GEO, China (Accession Number: GVM000342).

Change history

References

  • Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L Vulgare Leaves. J Plant Physiol 168:204–212

    Article  CAS  PubMed  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam M, Zhang S, Abdelghany AM, Shaibu AS, Feng Y, Li Y, Tian Y, Hong H, Li B, Sun J (2020) Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Res Int 130:108957

    Article  CAS  PubMed  Google Scholar 

  • Azam M, Zhang S, Qi J, Abdelghany AM, Shaibu AS, Ghosh S, Feng Y, Huai Y, Gebregziabher BS, Li J, Li B, Sun J (2021) Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J Food Compos Anal 98:103803

    Article  CAS  Google Scholar 

  • Bennett JO, Yu O, Heatherly LG, Krishnan HB (2004) Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. J Agric Food Chem 52:7574–7579

    Article  CAS  PubMed  Google Scholar 

  • Bradbury KE, Appleby PN, Key TJ (2014) Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European prospective investigation into cancer and nutrition (EPIC). Am J Clin Nutr 100:394S-398S

    Article  CAS  PubMed  Google Scholar 

  • Cai DJ, Zhao Y, Glasier J, Cullen D, Barnes S, Turner CH, Wastney M, Weaver CM (2004) Comparative effect of soy protein, soy isoflavones, and 17β-estradiol on bone metabolism in adult ovariectomized rats. J Bone Miner Res 20:828–839

    Article  PubMed  Google Scholar 

  • Chen L, Cai Y, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop J 6:162–171

  • Cheng H, Yu O, Yu D (2008) Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Sci 175:505–512

    Article  CAS  Google Scholar 

  • Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138:1365–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M (2007) Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol 143:326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS (2020) A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 27(140–153):e149

    Google Scholar 

  • Dye BT, Schulman BA (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys 36:131–150

    Article  CAS  Google Scholar 

  • Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Zhang S, Li J, Pei R, Tian L, Qi J, Azam M, Agyenim‐Boateng KG, Shaibu AS, Liu Y, Zhu Z, Li B, Sun J (2023) Dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. New Phytol https://doi.org/10.1111/nph.18610

  • Funaki A, Waki T, Noguchi A, Kawai Y, Yamashita S, Takahashi S, Nakayama T (2015) Identification of a highly specific isoflavone 7-O-glucosyltransferase in the soybean (Glycine max (L.) Merr.). Plant Cell Physiol 56:1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray J, Caparros RD, Grotewold E (2012) Grass phenylpropanoids: regulate before using! Plant Sci 184:112–120

    Article  CAS  PubMed  Google Scholar 

  • Greenham K, Guadagno CR, Gehan MA, Mockler TC, Weinig C, Ewers BE, McClung CR (2017) Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. Elife 6:e29655

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Men S, Zhu J, Hao Q, Tong N, Liu ZA, Zhang H, Shu Q, Wang L (2019) Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia ‘He Xie’. J Exp Bot 70:4749–4762

  • Han Z, Ahsan M, Adil MF, Chen X, Nazir MM, Shamsi IH, Zeng F, Zhang G (2020) Identification of the gene network modules highly associated with the synthesis of phenolics compounds in barley by transcriptome and metabolome analysis. Food Chem 323:126862

    Article  CAS  PubMed  Google Scholar 

  • Hollender CA, Kang C, Darwish O, Geretz A, Matthews BF, Slovin J, Alkharouf N, Liu Z (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165:1062–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S (2011) Weighted network analysis: applications in genomics and systems biology. Springer Science and Business Media, New York

    Book  Google Scholar 

  • Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Lee ER, Ahn JH (2012) Analysis of flavonoid contents and expression of flavonoid biosynthetic genes in Populus euramericana Guinier in response to abiotic stress. J Appl Biol Chem 55:141–145

    CAS  Google Scholar 

  • Kim JK, Kim EH, Park I, Yu BR, Lim JD, Lee YS, Lee JH, Kim SH, Chung IM (2014) Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways. Food Chem 153:258–264

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Zhang X, Pascuzzi PE, Liu CJ, Chapple C (2020) Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL. New Phytol 225:154–168

    Article  CAS  PubMed  Google Scholar 

  • Klein H, Xiao Y, Conklin PA, Govindarajulu R, Kelly JA, Scanlon MJ, Whipple CJ, Bartlett M (2018) Bulked-segregant analysis coupled to whole genome sequencing (BSA-seq) for rapid gene cloning in maize. G3-Genes Genom Genet 8:3583–3592

    CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  • Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinform 24:719–720

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinform 25:1754–1760

    Article  CAS  Google Scholar 

  • Li H, Li Y, Yu J, Wu T, Zhang J, Tian J, Yao Y (2020) MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. Hortic Res 7:19

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Tian GY, Song Y, Liu YL, Chen YD, Shi JP, Yang J (2017) Characterization of transcriptional modules related to fibrosing-NAFLD progression. Sci Rep 7:4748

    Article  PubMed  PubMed Central  Google Scholar 

  • Macgregor S, Zhao ZZ, Henders A, Martin NG, Montgomery GW, Visscher PM (2008) Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucleic Acids Res 36:e35

    Article  PubMed  PubMed Central  Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB (2011) Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med 364:2392–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen ILF, Williamson G (2007) Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr Cancer 57:1–10

    Article  CAS  PubMed  Google Scholar 

  • Park MR, Seo MJ, Lee YY, Park CH (2016) Selection of useful germplasm based on the variation analysis of growth and seed quality of soybean germplasms grown at two different latitudes. Plant Breed Biotechnol 4:462–474

    Article  Google Scholar 

  • Patra B, Pattanaik S, Yuan L (2013) Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74:435–447

    Article  CAS  PubMed  Google Scholar 

  • Phetnoo N, Werawatganon D, Siriviriyakul P (2013) Genistein could have a therapeutic potential for gastrointestinal diseases. Thai J Gastro 2013:120–125

    Google Scholar 

  • Qiu L, Li Y, Guan R, Liu Z, Wang L, Chang R (2009) Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agron Sin 35:571–579

    Article  Google Scholar 

  • Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer RJ, Michno J-M, Jeffers J, Hoekenga O, Dilkes B, Baxter I, Myers CL (2018) Integrating coexpression networks with GWAS to prioritize causal genes in maize. Plant Cell 30:2922–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T,Umezawa T, Bhattacharyya K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

  • Schroder J (1999) The chalcone/stibene synthase-type family of condensing enzymes. Nat Prod Chem 1:749–771

    CAS  Google Scholar 

  • Sulis DB, Wang JP (2020) Regulation of lignin biosynthesis by post-translational protein modifications. Front Plant Sci 11:914

  • Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511

    Article  Google Scholar 

  • Sun JM, Sun BL, Han FX, Yan SR, Yang H, Akio K (2011) Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agric Sci China 10:70–77

    Article  CAS  Google Scholar 

  • Sun JM, Han FX, Yan SR, Yang H, Li B (2015) Development of a novel soybean cultivar Zhonghuang 68 with high isoflavone content and low off-flavor. Soybean Sci 34:900–905

    CAS  Google Scholar 

  • Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed H, Cruz MS, Singh AK, Ye G, Kumar A (2012) Bulk segregant analysis:“an effective approach for mapping consistent-effect drought grain yield QTLs in rice.” Field Crops Res 134:185–192

    Article  Google Scholar 

  • Wang HJ, Murphy PA (1994) Isoflavone content in commercial soybean foods. J Agric Food Chem 42:1666–1673

    Article  CAS  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164–e164

  • Wang R, Sun L, Bao L, Zhang J, Jiang Y, Yao J, Song L, Feng J, Liu S, Liu Z (2013) Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish. BMC Genom 14:929

    Article  Google Scholar 

  • Whitham SA, Lincoln LM, Chowda-Reddy RV, Dittman JD, O’Rourke JA, Graham MA (2016) Virus-induced gene silencing and transient gene expression in soybean (Glycine max) using bean pod mottle virus infectious clones. Curr Protoc Plant Biol 1:263–283

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:1

    Article  CAS  Google Scholar 

  • Zhang X, Liu CJ (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng T, Li Y, Li Y, Zhang S, Ge T, Wang C, Zhang F, Faruquee M, Zhang L, Wu X, Tian Y, Jiang S, Xu J, Qiu L (2022) A general model for “germplasm-omics” data sharing and mining: a case study of SoyFGB v2.0. Sci Bull 67:1716–1719

    Article  Google Scholar 

  • Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J, Zhao Q (2018) Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int J Biol Sci 14:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xianchun Xia, Institute of Crop Sciences, CAAS, for providing a critical review of this manuscript and valuable suggestions.

Funding

This research was funded by the National Natural Science Foundation of China (32272178, 32161143033, 31671716 and 32001574) and the Agricultural Science and Technology Innovation Program of CAAS (2060203–2).

Author information

Authors and Affiliations

Authors

Contributions

MA: Investigation, data curation, visualization, writing-original draft preparation, SZ: supervision, conceptualization, methodology, investigation, data curation, YH, AMA, ASS, JQ: resources, formal analysis, software, YF, YL, JL and LQ: resources, BL: project administration, conceptualization, writing–review and editing, JS: funding acquisition, supervision, conceptualization, visualization, writing–review and editing.

Corresponding authors

Correspondence to Bin Li or Junming Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Istvan Rajcan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 77 KB)

Supplementary file2 (DOCX 11962 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, M., Zhang, S., Huai, Y. et al. Identification of genes for seed isoflavones based on bulk segregant analysis sequencing in soybean natural population. Theor Appl Genet 136, 13 (2023). https://doi.org/10.1007/s00122-023-04258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04258-5

Navigation