Skip to main content
Log in

An allelic variant in the ACS7 gene promotes primary root growth in watermelon

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Gene mining in a C. lanatus × C. amarus population revealed one gene, ACS7, linked to primary root elongation in watermelon.

Abstract

Watermelon is a xerophytic crop characterized by a long primary root and robust lateral roots. Therefore, watermelon serves as an excellent model for studying root elongation and development. However, the genetic mechanism underlying the primary root elongation in watermelon remains unknown. Herein, through bulk segregant analysis we identified a genetic locus, qPRL.Chr03, controlling primary root length (PRL) using two different watermelon species (Citrullus lanatus and Citrullus amarus) that differ in their root architecture. Fine mapping revealed that xaa-Pro dipeptidase and 1-aminocyclopropane-1-carboxylate synthase 7 (ACS7) are candidate regulators of the primary root growth. Allelic variation in the delimited region among 193 watermelon accessions indicated that the long-root alleles might only exist in C. amarus. Interestingly, the discrepancy in PRL among the C. amarus accessions was clearly associated with a nonsynonymous single nucleotide polymorphism variant within the ACS7 gene. The ACS7 expression and ethylene levels in the primary root tips suggested that ethylene is a negative regulator of root elongation in watermelon, as supported by the application of 1-aminocyclopropane-1-carboxylate (ACC, the ethylene precursor) or 2-aminoethoxyvinyl glycine (AVG, an ACS inhibitor). To the best of our knowledge, these findings provide the first description of the genetic basis of root elongation in watermelon. The detected markers of the ACS7 gene will facilitate marker-assisted selection for the PRL trait to improve water and nutrient use efficacy in watermelon and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguado E, Garcia A, Manzano S, Valenzuela JL, Cuevas J, Pinillos V, Jamilena M (2018) The sex-determining gene CitACS4 is a pleiotropic regulator of flower and fruit development in watermelon (Citrullus lanatus). Plant Reprod 31:411–426

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Gantait S, Mitra M, Yang Y, Li X (2020) Role of ethylene crosstalk in seed germination and early seedling development: a review. Plant Physiol Biochem PPB/Societe Francaise De Physiologie Vegetale 151:124–131

    CAS  Google Scholar 

  • Bouain N, Satbhai SB, Korte A, Saenchai C, Desbrosses G, Berthomieu P, Busch W, Rouached H (2018) Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. PLoS Genet 14:e1007304

    PubMed  PubMed Central  Google Scholar 

  • Bouain N, Korte A, Satbhai SB, Nam HI, Rhee SY, Busch W, Rouached H (2019) Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation. PLoS Genet 15:e1008392

    PubMed  PubMed Central  Google Scholar 

  • Carbonnel S, Das D, Varshney K, Kolodziej MC, Villaecija-Aguilar JA, Gutjahr C (2020) The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. Proc Natl Acad Sci USA 117:21757–21765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Kumawat G, Yan Y, Fan B, Xu D (2021) Mapping and validation of a major QTL for primary root length of soybean seedlings grown in hydroponic conditions. BMC Genom 22:132

    CAS  Google Scholar 

  • Chomicki G, Renner SS (2015) Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol 205:526–532

    PubMed  Google Scholar 

  • CIMMYT (2005) Laboratory protocols: CIMMYT Applied Molecular Genetics Laboratory, 3rd edition. CIMMYT, Mexico

  • Deja-Muylle A, Parizot B, Motte H, Beeckman T (2020) Exploiting natural variation in root system architecture via genome-wide association studies. J Exp Bot 71:2379–2389

    CAS  PubMed  Google Scholar 

  • Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN (2011) Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot 62:4875–4887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M, Bie Z, Xie H, Zhang F, Zhao S, Zhang H (2013) Genotypic variation for potassium efficiency in wild and domesticated watermelons under ample and limited potassium supply. J Plant Nutr Soil Sci 176:466–473

    CAS  Google Scholar 

  • Fan M, Huang Y, Zhong Y, Kong Q, Xie J, Niu M, Xu Y, Bie Z (2014) Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta 239:397–410

    CAS  PubMed  Google Scholar 

  • Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa’ar U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94:169–191

    CAS  PubMed  Google Scholar 

  • Guan R, Su J, Meng X, Li S, Liu Y, Xu J, Zhang S (2015) Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae. Plant Physiol 169:299–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    CAS  PubMed  Google Scholar 

  • Guo S, Sun H, Xu Y, Fei Z (2020) Citrullus lanatus. Trends Genet 36:456–457

    CAS  PubMed  Google Scholar 

  • Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X, Zhang H, Shang J, Gong G, Wen C, He N, Tian S, Li M, Liu J, Wang Y, Zhu Y, Jarret R, Levi A, Zhang X, Huang S, Fei Z, Liu W, Xu Y (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet

  • Guzzon F, Müller JV, do Nascimento AM, Cauzzi P, Orsenigo S, Mondoni A, Abeli T (2017) Drought avoidance adaptive traits in seed germination and seedling growth of Citrullus amarus landraces. S Afr J Bot 113:382–388

    Google Scholar 

  • Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J, Zhang M (2018) A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 25:1–10

    PubMed  Google Scholar 

  • Huang SJ, Chang CL, Wang PH, Tsai MC, Hsu PH, Chang IF (2013) A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. J Exp Bot 64:4343–4360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamann TM, Balint-Kurti PJ, Holland JB (2015) QTL mapping using high-throughput sequencing. In: Alonso JM, Stepanova AN (eds) Plant functional genomics: methods and protocols. Springer, New York, pp 257–285

    Google Scholar 

  • Jia Z, Giehl RFH, Meyer RC, Altmann T, von Wiren N (2019) Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat Commun 10:2378

    PubMed  PubMed Central  Google Scholar 

  • Jung JK, McCouch S (2013) Getting to the roots of it: Genetic and hormonal control of root architecture. Front Plant Sci 4:186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katuuramu DN, Wechter WP, Washington ML, Horry M, Cutulle MA, Jarret RL, Levi A (2020) Phenotypic diversity for root traits and identification of superior germplasm for root breeding in watermelon. HortScience 55:1272–1279

    Google Scholar 

  • Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran A, Wakeel A, Snowdon R, Friedt W, Léon J (2019) Genetic dissection of root architectural traits by QTL and genome-wide association mapping in rapeseed (Brassica napus ). Plant Breed 138:184–192

    CAS  Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE 9:e90612

    PubMed  PubMed Central  Google Scholar 

  • Lachowiec J, Shen X, Queitsch C, Carlborg O (2015) A Genome-wide association analysis reveals epistatic cancellation of additive genetic variance for root length in Arabidopsis thaliana. PLoS Genet 11:e1005541

    PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  PubMed  Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X (2001) Low Genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36:1096–1101

    CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li B, Sun L, Huang J, Goschl C, Shi W, Chory J, Busch W (2019a) GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nat Commun 10:3896

    PubMed  PubMed Central  Google Scholar 

  • Li H, Mo Y, Cui Q, Yang X, Guo Y, Wei C, Yang J, Zhang Y, Ma J, Zhang X (2019b) Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes. Plant Sci 278:32–43

    CAS  PubMed  Google Scholar 

  • Li Z, Zhang C, Cai Q, Zhou Y, Hu Z, Zhang M, Yang J (2020) Identification of MAM1s in regulation of 3C glucosinolates accumulation in allopolyploid Brassica juncea. Hort J 6:409–418

    Google Scholar 

  • Li Y, Ye H, Song L, Vuong TD, Song Q, Zhao L, Shannon JG, Li Y, Nguyen HT (2021) Identification and characterization of novel QTL conferring internal detoxification of aluminum in soybean. J Exp Bot. https://doi.org/10.1093/jxb/erab168

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M (2019) Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol J. https://doi.org/10.1111/pbi.13276

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- Δ ΔCT Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Luo X, Chen Z, Gao J, Gong Z (2014) Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J 79:44–55

    CAS  PubMed  Google Scholar 

  • Manavalan LP, Prince SJ, Musket TA, Chaky J, Deshmukh R, Vuong TD, Song L, Cregan PB, Nelson JC, Shannon JG, Specht JE, Nguyen HT (2015) Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE 10:e0120490

    PubMed  PubMed Central  Google Scholar 

  • Mansfeld BN, Grumet R (2018) QTLseqr: An R Package for Bulk Segregant Analysis with Next-Generation Sequencing. Plant Genome 11

  • Manzano S, Aguado E, Martinez C, Megias Z, Garcia A, Jamilena M (2016) The ethylene biosynthesis Gene CitACS4 regulates monoecy/andromonoecy in watermelon (Citrullus lanatus). PLoS ONE 11:e0154362

    PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mo Y, Yang R, Liu L, Gu X, Yang X, Wang Y, Zhang X, Li H (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79:229–241

    CAS  Google Scholar 

  • Moses T, Goossens A (2017) Plants for human health: greening biotechnology and synthetic biology. J Exp Bot 68:4009–4011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    CAS  PubMed  Google Scholar 

  • Nakano Y, Kusunoki K, Hoekenga OA, Tanaka K, Iuchi S, Sakata Y, Kobayashi M, Yamamoto YY, Koyama H, Kobayashi Y (2020) Genome-wide association study and genomic prediction elucidate the distinct genetic architecture of aluminum and proton tolerance in Arabidopsis thaliana. Front Plant Sci 11:405

    PubMed  PubMed Central  Google Scholar 

  • Ngwepe RM, Mashilo J, Shimelis H (2019) Progress in genetic improvement of citron watermelon (Citrullus lanatus var. citroides): a review. Genet Resour Crop Evol 66:735–758

    CAS  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone crosstalk: the pivot of root growth. J Exp Bot 66:1113–1121

    CAS  PubMed  Google Scholar 

  • Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21

    CAS  PubMed  Google Scholar 

  • Pierret A, Maeght JL, Clement C, Montoroi JP, Hartmann C, Gonkhamdee S (2016) Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Ann Bot 118:621–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Huang R (2018) Auxin controlled by ethylene steers root development. Int J Mol Sci. https://doi.org/10.3390/ijms19113656

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin H, He L, Huang R (2019) The coordination of ethylene and other hormones in primary root development. Front Plant Sci 10:874

    PubMed  PubMed Central  Google Scholar 

  • Renner SS, Wu S, Pérez-Escobar OA, Silber MV, Fei Z, Chomicki G (2021) A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proc Natl Acad Sci U S A 118(23):e2101486118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    CAS  PubMed  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    PubMed  Google Scholar 

  • Roberts J, Broadley MR, Pink D, Hand P, Lynn J, Monaghan JM (2019) Quantitative trait loci (QTLs) linked with root growth in lettuce (Lactuca sativa) seedlings. Mol Breed 40

  • Sadhukhan A, Kobayashi Y, Nakano Y, Iuchi S, Kobayashi M, Sahoo L, Koyama H (2017) Genome-wide association study reveals that the Aquaporin NIP1;1 contributes to variation in hydrogen peroxide sensitivity in Arabidopsis thaliana. Mol Plant 10:1082–1094

    CAS  PubMed  Google Scholar 

  • Sasaki K, Kojima S (2018) Identification of genomic regions regulating ammonium-dependent inhibition of primary root length in Arabidopsis thaliana. Soil Sci Plant Nutr 64:746–751

    CAS  Google Scholar 

  • Satbhai SB, Ristova D, Busch W (2015) Underground tuning: quantitative regulation of root growth. J Exp Bot 66:1099–1112

    CAS  PubMed  Google Scholar 

  • Scacchi E, Osmont KS, Beuchat J, Salinas P, Navarrete-Gomez M, Trigueros M, Ferrandiz C, Hardtke CS (2009) Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development 136:2059–2067

    CAS  PubMed  Google Scholar 

  • Sergeeva LI, Keurentjes JJB, Bentsink L, Vonk J, van der Plas LHW, Koornneef M, Vreugdenhil D (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci USA 103:2994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad Z, Kellermeier F, Armstrong EM, Rogers S, Lobet G, Amtmann A, Hills A (2018) EZ-root-VIS: a software pipeline for the rapid analysis and visual reconstruction of root system architecture. Plant Physiol 177:1368–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112:381–389

    CAS  PubMed  Google Scholar 

  • Siddiqui MN, Leon J, Naz AA, Ballvora A (2021) Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J Exp Bot 72:1007–1019

    CAS  PubMed  Google Scholar 

  • Slovak R, Setzer C, Roiuk M, Bertels J, Goschl C, Jandrasits K, Beemster GTS, Busch W (2020) Ribosome assembly factor Adenylate Kinase 6 maintains cell proliferation and cell size homeostasis during root growth. New Phytol 225:2064–2076

    CAS  PubMed  Google Scholar 

  • Sun P, Tian QY, Zhao MG, Dai XY, Huang JH, Li LH, Zhang WH (2007) Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol 48:1229–1235

    CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    CAS  PubMed  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131-151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang Y, Ding G, White PJ, Broadley MR, Hammond JP, Jin K, Cai H, Xu F, Shi L (2019) Identification of QTLs for relative root traits associated with phosphorus efficiency in two culture systems in Brassica napus. Euphytica. https://doi.org/10.1007/s10681-019-2512-4

    Article  Google Scholar 

  • Wang Z, Yadav V, Yan X, Cheng D, Wei C, Zhang X (2021) Systematic genome-wide analysis of the ethylene-responsive ACS gene family: contributions to sex form differentiation and development in melon and watermelon. Gene 805:145910

    CAS  PubMed  Google Scholar 

  • Xiong L, Xiao D, Xu X, Guo Z, Wang NN (2014) The non-catalytic N-terminal domain of ACS7 is involved in the post-translational regulation of this gene in Arabidopsis. J Exp Bot 65:4397–4408

    CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yang ZB, He C, Ma Y, Herde M, Ding Z (2017) Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173:1420–1433

    CAS  PubMed  Google Scholar 

  • Yang S, Wang S, Li S, Du Q, Qi L, Wang W, Chen J, Wang H (2020) Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. J Exp Bot 71:7160–7170

    CAS  PubMed  Google Scholar 

  • Ye H, Roorkiwal M, Valliyodan B, Zhou L, Chen P, Varshney RK, Nguyen HT (2018) Genetic diversity of root system architecture in response to drought stress in grain legumes. J Exp Bot 69:3267–3277

    CAS  PubMed  Google Scholar 

  • Zhou M, Guo S, Zhang J, Zhang H, Li C, Tang X, Ren Y, Gong G, Xu Y (2016) Comparative dynamics of ethylene production and expression of the ACS and ACO genes in normal-ripening and non-ripening watermelon fruits. Acta Physiol Plant 38:228

    Google Scholar 

  • Zluhan-Martinez E, Lopez-Ruiz BA, Garcia-Gomez ML, Garcia-Ponce B, de la Paz SM, Alvarez-Buylla ER, Garay-Arroyo A (2021) Integrative roles of phytohormones on cell proliferation, elongation and differentiation in the Arabidopsis thaliana primary root. Front Plant Sci 12:659155

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (2019YFD1000300, 2019YFD100190200, 2018YFD0201300), the Natural Science Foundation of Hainan Province (321MS064), the Natural Science Foundation of Zhejiang Province (LY21C150008), Science and technology innovation platform for the watermelon and melon breeding, reproduction, and spreading of Zhejiang Province (2020-KYY-NSFZ-0314), the Earmarked Fund for China Agriculture Research System (CARS-25-17), the Fundamental Research Funds for the Central Universities (2017QNA6016, +226-2022-00100), and the Key Science and Technology Program for Agricultural (Vegetable) New Variety Breeding of Zhejiang Province (2021C02065). We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was supported by the National Key Research and Development Plan of China (2019YFD1000300, 2019YFD100190200, 2018YFD0201300), the Natural Science Foundation of Hainan Province (321MS064), the Natural Science Foundation of Zhejiang Province (LY21C150008), Science and technology innovation platform for the watermelon and melon breeding, reproduction, and spreading of Zhejiang Province (2020-KYY-NSFZ-0314), the Earmarked Fund for China Agriculture Research System (CARS-25-17), the Fundamental Research Funds for the Central Universities (2017QNA6016, + 226-2022-00100), and the Key Science and Technology Program for Agricultural (Vegetable) New Variety Breeding of Zhejiang Province (2021C02065).

Author information

Authors and Affiliations

Authors

Contributions

ZH and MZ conceived and designed the study; AM conducted all experiments and wrote the manuscript; RQ, NQ, AA and GKM participated in results analysis; HZ, HY, YM, KZ, YZ, and YX helped perform parts of experiments; XL and JY participated in research discussion; all authors reviewed the manuscript.

Corresponding authors

Correspondence to Mingfang Zhang or Zhongyuan Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval

Not applicable.

Additional information

Communicated by Amnon Levi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 51498 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A., Qi, R., Zhao, H. et al. An allelic variant in the ACS7 gene promotes primary root growth in watermelon. Theor Appl Genet 135, 3357–3373 (2022). https://doi.org/10.1007/s00122-022-04173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04173-1

Navigation