Skip to main content
Log in

Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Nulliplex-branch (nb) mutants in cotton display a specific architecture. The gene responsible for the nb phenotype was identified, and its modulation mode was further studied.

Abstract

Plant architecture is an important agronomic factor influencing various traits such as yield and variety adaptability in crop plants. Cotton (Gossypium) simultaneously displays monopodial and sympodial growth. Nulliplex-branch (nb) mutants showing determinate sympodial shoots have been reported in both G. hirsutum (Ghnb) and G. barbadense (Gbnb). In this study, the gene responsible for the nb phenotype was identified. GhNB and GbNB were found to be allelic loci and are TERMINAL FLOWER 1 orthologs on the Dt subgenome, though the At copies remain native. Sequencing and association analyses identified four (Gh-nb1Gh-nb4) and one (Gb-nb1) type of point mutation in the coding sequences of Ghnb and Gbnb, respectively. The NB gene was mainly expressed in the root and shoot apex, and expression rhythms were also observed in these tissues, suggesting that the expression of the NB gene could be regulated by photoperiod. Constitutive overexpression of GhNB suppresses the differentiation of the reproductive shoots. Knockout of both copies of GhNB caused the main and lateral shoots to terminate in flowers, which is a more determinate architecture than that of the nb mutants and implies that its function might be dosage dependent. A protein lipid overlay assay indicated that the amino acid substitutions in Gh-nb1 and Gb-nb1 weaken the ligand-binding activity of the NB protein in vitro. These findings suggest that the NB gene plays crucial roles in regulating the determinacy of shoots, and the modulation of this gene should constitute an effective crop improvement approach through adjusting the growth habit of cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052

    Article  CAS  Google Scholar 

  • Ahn JH, Miller DM, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  Google Scholar 

  • Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822

    Article  CAS  Google Scholar 

  • Banfield MJ, Brady RL (2000) The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J Mol Biol 297:1159–1170

    Article  CAS  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein SJ, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

    Article  CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80

    Article  CAS  Google Scholar 

  • Chen W, Yao J, Chu L, Yuan Z, Li Y, Zhang Y (2015) Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theor Appl Genet 128:539–547

    Article  CAS  Google Scholar 

  • Chung KS, Yoo SY, Yoo SJ, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT), a member of the FT/TFL1 family, shows distinct pattern of expression during the vegetative growth of Arabidopsis. Plant Signal Behav 5:1102–1104

    Article  CAS  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030

    Article  CAS  Google Scholar 

  • Dowler S, Kular GS, Alessi DR (2002) Protein lipid overlay assay. Sci Signal 2002:pl6

    Article  Google Scholar 

  • Elitzur T, Nahum H, Borovsky Y, Pekker I, Eshed Y, Paran I (2009) Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. J Exp Bot 60:869–880

    Article  CAS  Google Scholar 

  • Endrizzi JE, Ray DT (1992) Mapping of the cl1, R1, yg1, and Dw loci in the long arm of chromosome 16 of cotton. J Econ Soc Hist Orient 53:778–780

    Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098

    Article  CAS  Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  CAS  Google Scholar 

  • Gore UR (1935) Morphogenetic studies on the inflorescence of cotton. Bot Gaz 97:118–138

    Article  Google Scholar 

  • Grover CE, Gallagher JP, Jareczek JJ, Page JT, Udall JA, Gore MA, Wendel JF (2015) Re-evaluating the phylogeny of allopolyploid Gossypium L. Mol Phylogenet Evol 92:45–52

    Article  Google Scholar 

  • Guo D, Li C, Dong R, Li X, Xiao X, Huang X (2015) Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum. J Integr Plant Biol 57:522–533

    Article  CAS  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  CAS  Google Scholar 

  • Ho WW, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26:552–564

    Article  CAS  Google Scholar 

  • Huang NC, Jane WN, Chen J, Yu TS (2012) Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J 72:175–184

    Article  CAS  Google Scholar 

  • Jang S, Torti S, Coupland G (2009) Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J 60:614–625

    Article  CAS  Google Scholar 

  • Jia Y, Sun X, Sun J, Pan Z, Wang X, He S, Xiao S, Shi W, Zhou Z, Pang B (2014) Association Mapping for epistasis and environmental interaction of yield traits in 323 cotton cultivars under 9 different environments. PLoS ONE 9:e95882

    Article  Google Scholar 

  • Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50:519–524

    Article  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  Google Scholar 

  • Kearney TH (1930) Short branch, another character of cotton showing monohybrid inheritance. J Agric Res 41:379–387

    Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic Roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  Google Scholar 

  • Kong D, Qu L, Zhang X, Liu J, Wang P, Li F (2017) Optimization of EMS mutagenesis condition and screening of mutants in Gossypium arboretum L. Cotton Sci 29:336–344

    Google Scholar 

  • Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, Sargent DJ, Battey NH, Coupland G, Elomaa P, Hytönen T (2012) Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiol 159:1043–1054

    Article  CAS  Google Scholar 

  • Liu BH, Watanabe S, Uchiyama T, Kong FJ, Kanazawa A, Xia ZJ, Nagamatsu A, Arai M, Yamada T, Kitamura K (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210

    Article  CAS  Google Scholar 

  • Liu X, Zhao B, Zheng HJ, Hu Y, Lu G, Yang CQ, Chen JD, Chen JJ, Chen DY, Zhang L, Zhou Y, Wang LJ, Guo WZ, Bai YL, Ruan JX, Shangguan XX, Mao YB, Shan CM, Jiang JP, Zhu YQ, Jin L, Kang H, Chen ST, He XL, Wang R, Wang YZ, Chen J, Wang LJ, Yu ST, Wang BY, Wei J, Song SC, Lu XY, Gao ZC, Gu WY, Deng X, Ma D, Wang S, Liang WH, Fang L, Cai CP, Zhu XF, Zhou BL, Jeffrey Chen Z, Xu SH, Zhang YG, Wang SY, Zhang TZ, Zhao GP, Chen XY (2015) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139

    Article  CAS  Google Scholar 

  • McGarry RC, Ayre BG (2012) Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS ONE 7:e36746

    Article  CAS  Google Scholar 

  • McGarry RC, Prewitt SF, Culpepper S, Eshed Y, Lifschitz E, Ayre BG (2016) Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. New Phytol 212:244–258

    Article  CAS  Google Scholar 

  • Mcsteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    Article  CAS  Google Scholar 

  • Michael W, Christina C, Katia S, Oliver B, Katrin W, Christian N, Dragica B, Christopher G, Karin S, Claudia O (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  Google Scholar 

  • Mimida N, Goto K, Kobayashi Y, Araki T, Ahn JH, Weigel D, Murata M, Motoyoshi F, Sakamoto W (2001) Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6:327–336

    Article  CAS  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J Cell Mol Biol 29:743–750

    Article  CAS  Google Scholar 

  • Nakamura Y, Andres F, Kanehara K, Liu YC, Dormann P, Coupland G (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5:3553

    Article  Google Scholar 

  • Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB (2014) Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 46:1337–1342

    Article  CAS  Google Scholar 

  • Patel GB, Munshi ZA, Patel CT (1947) Mutation in Gujrat Cotton (Gossypium herbaceum). In: Indian Central Cotton Committee, 3rd conference

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, ur Rahman M, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MF, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang T, Dennis ES, Mayer KF, Peterson DG, Rokhsar DS, Wang X, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  Google Scholar 

  • Pathak RS, Singh RB (1975) Genetic analysis of the duplicate loci, cluster and short branch in Gossypium hirsutum L. Theor Appl Genet 46:281

    Article  CAS  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    Article  CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609

    CAS  PubMed  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851

    Article  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  Google Scholar 

  • Schütze K, Harter K, Chaban C (2009) Bimolecular Fluorescence Complementation (BiFC) to study srotein-protein interactions in living plant cells. In: Pfannschmidt T (ed) Plant signal transduction: methods and protocols. Humana Press, Totowa, pp 189–202

    Chapter  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  CAS  Google Scholar 

  • Silow RA (1946) Evidence on chromosome homology and gene homology in the amphidiploid new world cottons. J Genet 47:213–221

    Article  CAS  Google Scholar 

  • Song Q, Zhang T, Stelly DM, Chen ZJ (2017) Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99

    Article  Google Scholar 

  • Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van EJ, Jiménez-Gómez JM, Lippman ZB (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162

    Article  CAS  Google Scholar 

  • Stephens SG (1955) Linkage in upland cotton. Genetics 40:903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Du X, Cai C, Long L, Zhang S, Qiao P, Wang W, Zhou K, Wang G, Liu X, Zhang H, Geng S, Yang C, Gao W, Mo J, Miao C, Song C, Cai Y (2016) To be a flower or fruiting branch: insights revealed by mRNA and small RNA transcriptomes from different cotton developmental stages. Sci Rep 6:23212

    Article  CAS  Google Scholar 

  • Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, Mcclean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563

    Article  CAS  Google Scholar 

  • Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129

    Article  CAS  Google Scholar 

  • Wang L, Zhu Y, Hu W, Zhang X, Cai C, Guo W (2015) Comparative transcriptomics reveals jasmonic acid-associated metabolism related to cotton fiber initiation. PLoS ONE 10:e0129854

    Article  Google Scholar 

  • Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X (2017a) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587

    Article  CAS  Google Scholar 

  • Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L (2017b) High efficient multi-sites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16:137–150

    Article  Google Scholar 

  • Wang Y, Yu H, Tian C, Sajjad M, Gao C, Tong Y, Wang X, Jiao Y (2017c) Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol 175:746–757

    Article  CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    Article  CAS  Google Scholar 

  • Wigge PA, Min CK, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  Google Scholar 

  • Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46:1175–1189

    Article  CAS  Google Scholar 

  • Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, Chen L, He Y, Zhang L, Zhu L, Li Y, Liang Q, Lin Z, Yang X, Liu N, Jin S, Lei Y, Ding Y, Li G, Ruan X, Ruan Y, Zhang X (2015) The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep 5:17662

    Article  CAS  Google Scholar 

  • Zhai XJ, Li YY, Wang YL, Gong RP, Zhai LF, Shi XY (2011) Transgenic insect-resistant short-season cotton cultivars, Xiazao 2 and Xiazao 3. China Cotton 38:34–35

    Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, Hulse-Kemp AM, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride RC, Chen X, Dennis E, Llewellyn DJ, Peterson DG, Thaxton P, Jones DC, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen ZJ (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  Google Scholar 

  • Zhang X, Wang C, Pang C, Wei H, Wang H, Song M, Fan S, Yu S (2016a) Characterization and functional analysis of PEBP family genes in upland cotton (Gossypium hirsutum L.). PLoS ONE 11:e0161080

    Article  Google Scholar 

  • Zhang YN, Cai DR, Huang XZ (2016b) Identification of bZIP protein family in Gossypium arboreum and tissue expression analysis of GaFDs genes. Acta Agron Sin 42:832

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (31671740). We thank the national mid-term cotton gene bank of ICR-CAAS for providing the cotton materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongshan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of China.

Additional information

Communicated by Alan H. Schulman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yao, J., Li, Y. et al. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet 132, 97–112 (2019). https://doi.org/10.1007/s00122-018-3197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3197-0

Navigation