Skip to main content
Log in

Molecular dissection of heterosis manifestation during early maize root development

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Heterosis is of paramount agronomic importance and has been successfully exploited in maize hybrid breeding for decades. Nevertheless, the molecular basis of heterosis remains elusive. Heterosis is not only observed in adult traits like yield or plant height, but is already detected during embryo and seedling development. Hence, the maize (Zea mays L.) primary root which is the first organ that emerges after germination is a suitable model to study heterosis manifestation. Various seedling root traits including primary root length and lateral root density display heterosis. Microarray studies suggest organ specific patterns of nonadditive gene expression in maize hybrids. Moreover, such experiments support the notion that global expression trends in maize primary roots are conserved between different hybrids. Furthermore, nonadditive expression patterns of specific genes such as a SUPEROXIDE DISMUTASE 2 might contribute to the early manifestation of heterosis. Proteome profiling experiments of maize hybrid primary roots revealed nonadditive accumulation patterns that were distinct from the corresponding RNA profiles underscoring the importance of posttranscriptional processes such as protein modifications that might be related to heterosis. Finally, analysis of selected metabolites imply that a subtle regulation of particular biochemical pathways such as the phenylpropanoid pathway in hybrids might contribute to the manifestation of heterosis in maize primary roots. In the future, recently developed molecular tools will facilitate the analysis of the molecular principles underlying heterosis in maize roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andorf S, Gartner T, Steinfath M, Witucka-Wall H, Altmann T, Repsilber D (2009) Towards systems biology of heterosis: a hypothesis about molecular network structure applied for the Arabidopsis metabolome. EURASIP J Bioinform Syst Biol:147157

  • Bi IV, McMullen MD, Sanchez-Villeda H, Schroeder S, Gardiner J, Polacco M, Soderlund C, Wing R, Fang Z, Coe EH (2006) Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci 46:12–21

    Article  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo SJ, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    Article  CAS  PubMed  Google Scholar 

  • Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genet 9:192–203

    Article  CAS  PubMed  Google Scholar 

  • Chang WWP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JKM (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–317

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng SH, Zhang XY, Chen ZG, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  Google Scholar 

  • Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable PS, Hochholdinger F (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145:575–588

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, pp 19–29

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74

    Article  CAS  PubMed  Google Scholar 

  • East EM (1908) Inbreeding in corn. Conn Agric Exp Stn 1907:419–428

    Google Scholar 

  • Ettenhuber C, Spielbauer G, Margl L, Hannah LC, Gierl A, Bacher A, Genschel U, Eisenreich W (2005) Changes in flux pattern of the central carbohydrate metabolism during kernel development in maize. Phytochemistry 66:2632–2642

    Article  CAS  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Fu HH, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Danilevskaya ON, Yang XF, Hut ZH (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36:30–44

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Yang XF, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831–845

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Yang S, Rupe M, Hu B, Bickel DR, Arthur L, Smith O (2008) Genome-wide allele-specific expression analysis using massively parallel signature sequencing (MPSS) reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue. Plant Mol Biol 66:551–563

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, Nusbaum C, Mayer KFX, Messing J (2005) Structure and architecture of the maize genome. Plant Physiol 139:1612–1624

    Article  CAS  PubMed  Google Scholar 

  • Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Guo L, Schnable PS (2004a) Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Plant Mol Biol 56:397–412

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Park WJ, Sauer M, Woll K (2004b) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004c) Genetic dissection of root formation in maize (Zea mays L.) reveals root-type specific developmental programmes. Ann Bot 93:359–368

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Woll K, Guo L, Schnable PS (2005) The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Proteomics 5:4885–4893

    Article  CAS  PubMed  Google Scholar 

  • Hoecker N, Keller B, Piepho HP, Hochholdinger F (2006) Manifestation of heterosis during early maize (Zea mays L.) root development. Theor Appl Genet 112:421–429

    Article  PubMed  Google Scholar 

  • Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP, Hochholdinger F (2008a) Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics 179:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho HP, Nordheim A, Hochholdinger F (2008b) Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics 8:3882–3894

    Article  CAS  PubMed  Google Scholar 

  • Hollick JB (2008) Sensing the epigenome. Trends Plant Sci 13:398–404

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  Google Scholar 

  • Kapranov P, Willingham AT, Gingeras TR (2007) Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 8:413–423

    Article  CAS  PubMed  Google Scholar 

  • Keller B, Emrich K, Hoecker N, Sauer M, Hochholdinger F, Piepho HP (2005) Designing a microarray experiment to estimate dominance in maize (Zea mays L.). Theor Appl Genet 111:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kempton JH, McLane JW (1942) Hybrid vigor aid weight of germs in the seeds of maize. J Agric Res 64:0065–0080

    Google Scholar 

  • Lamkey KR, Edwards JW (1998) Heterosis: theory and estimation.. Proceedings of the 34th Illinois Corn Breeders’ School, Urbana, pp 62–72

    Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lamkemeyer T, Jakob A, Mi GH, Zhang FS, Nordheim A, Hochholdinger F (2006) Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Proteomics 6:4300–4308

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Meyer S, Pospisil H, Scholten S (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381–391

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Murdoch HA (1940) Hybrid vigor in maize embryos. J Hered 31:361–363

    Google Scholar 

  • Piepho HP, Keller B, Hoecker N, Hochholdinger F (2006) Combining signals from spotted cDNA microarrays obtained at different scanning intensities. Bioinformatics 22:802–807

    Article  CAS  PubMed  Google Scholar 

  • Powers L (1945) Relative yields of inbred lines and F1-hybrids of tomato. Bot Gaz 106:247–268

    Article  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Jakob A, Nordheim A, Hochholdinger F (2006) Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Proteomics 6:2530–2541

    Article  CAS  PubMed  Google Scholar 

  • Shull GF (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  • Song RT, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA 100:9055–9060

    Article  CAS  PubMed  Google Scholar 

  • Spielbauer G, Margl L, Hannah LC, Romisch W, Ettenhuber C, Bacher A, Gierl A, Eisenreich W, Genschel U (2006) Robustness of central carbohydrate metabolism in developing maize kernels. Phytochemistry 67:1460–1475

    Article  CAS  PubMed  Google Scholar 

  • Sprague GF (1936) Hybrid vigor and growth rates in a maize cross and its reciprocal. J Agricl Res 53:0819–0830

    Google Scholar 

  • Springer NM, Stupar RM (2007a) Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell 19:2391–2402

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Stupar RM (2007b) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  PubMed  Google Scholar 

  • Stuber CW (1999) Biochemistry, molecular biology and physiology of heterosis. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America, Madison, pp 173–184

    Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173:2199–2210

    Article  CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    Article  CAS  PubMed  Google Scholar 

  • Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T (2007) Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol 63:21–34

    Article  CAS  PubMed  Google Scholar 

  • Vega-Sanchez ME, Gowda M, Wang GL (2007) Tag-based approaches for deep transcriptome analysis in plants. Plant Sci 173:371–380

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wang FH (1947) Embryological development of inbred and hybrid Zea mays L. Am J Bot 34:113–125

    Article  Google Scholar 

  • Wang QH, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649

    Article  CAS  PubMed  Google Scholar 

  • Wang ZK, Ni ZF, Wu HL, Nie XL, Sun QX (2006) Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theor Appl Genet 113:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol 138:1637–1643

    Article  CAS  PubMed  Google Scholar 

  • Woll K, Dressel A, Sakai H, Piepho HP, Hochholdinger F (2006) ZmGrp3: identification of a novel marker for root initiation in maize and development of a robust assay to quantify allele-specific contribution to gene expression in hybrids. Theor Appl Genet 113:1305–1315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Heterosis research in F.H.s laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG) in the priority program SPP1149 “heterosis in plants”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hochholdinger.

Additional information

Communicated by M. Bohn.

This article was contributed to the special issue “Heterosis in Plant”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschold, A., Marcon, C., Hoecker, N. et al. Molecular dissection of heterosis manifestation during early maize root development. Theor Appl Genet 120, 383–388 (2010). https://doi.org/10.1007/s00122-009-1082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1082-6

Keywords

Navigation