Skip to main content

Advertisement

Log in

Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Isolation and mapping of genome-wide resistance (R) gene analogs (RGAs) is of importance in identifying candidate(s) for a particular resistance gene/QTL. Here we reported our result in mapping totally 228 genome-wide RGAs in maize. By developing RGA-tagged markers and subsequent genotyping a population consisting of 294 recombinant inbred lines (RILs), 67 RGAs were genetically mapped on maize genome. Meanwhile, in silico mapping was conducted to anchor 113 RGAs by comparing all 228 RGAs to those anchored EST and BAC/BAC-end sequences via tblastx search (E-value < 10−20). All RGAs from different mapping efforts were integrated into the existing SSR linkage map. After accounting for redundancy, the resultant RGA linkage map was composed of 153 RGAs that were mapped onto 172 loci on maize genome, and the mapped RGAs accounted for approximate three quarters of the genome-wide RGAs in maize. The extensive co-localizations were observed between mapped RGAs and resistance gene/QTL loci, implying the usefulness of this RGA linkage map in R gene cloning via candidate gene approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarts MGM, Hekkert B Te Lintel, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact 11:251–258

    Article  PubMed  CAS  Google Scholar 

  • Ashfield T, Bocian A, Held D, Henk AD, Marek LF, Danesh D, Penuela S, Meksem K, Lightfoot DA, Young ND, Shoemaker RC, Innes RW (2003) Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Mol Plant Microbe Interact 16:817–826

    Article  PubMed  CAS  Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269:205–214

    PubMed  CAS  Google Scholar 

  • Chin DB, Arroyo-Garcia R, Ochoa OE, Kesseli RV, Lavelle DO, Michelmore RW, 2001 Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics 157:831–849

    PubMed  CAS  Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact 11:968–978

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant cell 12:663–676

    Article  PubMed  CAS  Google Scholar 

  • Dilbirligi M, Gill KS (2003) Identification and analysis of expressed resistance gene sequences in wheat. Plant Mol Biol 53:771–787

    Article  PubMed  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG, C Lane (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat protein. Cell 84:451–459

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Ellis JG (2001) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J 27:439–53

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the Hm1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang TY, Jia JZ (2001) Advances in molecular makers studies on disease/pest resistance in maize. Adv Bioeng 21:42–49

    Google Scholar 

  • Li C, Zhao J, Jiang H, Wu X, Sun J, Zhang C, Wang X, Lou Y, Li C (2006) The wound response mutant suppressor of prosystemin-mediated responses 6 (spr 6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol 47:653–663

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Ekramoddoullah AK (2003) Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine (Pinus monticola Dougl. ex. D. Don.). Mol Genet Genomics 270:432–441

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Frary A, Wu TY, Brommonschenkel S, Chunwongse J, Earle ED, Tanksley SD (1994) A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KFX, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VA (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Niu TH, Hu ZJ (2004) SNPicker: a graphical tool for primer picking in designing mutagenic endonuclease restriction assays. Bioinformatics 20:3263–3265

    Article  PubMed  CAS  Google Scholar 

  • Paal J, Henselewski H, Muth J, Meksem K, Menéndez CM, Salamini F, Ballvora A, Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38:285–297

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A (1999) Disease resistance gene analogs as candidates for QTLs involved in pepper–pathogen interactions. Genome 42:1100–1110

    Article  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Quint M, Mihaljevic R, Dussle CM, Xu ML, Melchinger AE, Lübberstedt T (2002) Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theor Appl Genet 105:355–363

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14–24

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Gen Genomics 269:406–419

    Article  CAS  Google Scholar 

  • Sawers RJH, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP (2006) The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60:95–106

    Article  PubMed  CAS  Google Scholar 

  • Shen KA, Meyers BC, Islam-Faridi MN, Chin DB, Stelly DM, Michelmore RW (1998) Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact 11:815–823

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Collins NC, Ayliffe M, Smith SM, Drake J, Pryor T, Hulbert SH (2001) Recombination between paralogues at the rp1 rust resistance locus in maize. Genetics 158:423–438

    PubMed  CAS  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Wang Z, Taramino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL (2001) Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics 265:302–310

    Article  PubMed  CAS  Google Scholar 

  • Webb CA, Richter TE, Collins NC, Nicolas M, Trick HN, Pryor T, Hulbert SH (2002) Genetic and molecular characterization of the maize rp3 rust resistance locus. Genetics 162:381–394

    PubMed  CAS  Google Scholar 

  • Wei FS, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–48

    PubMed  CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    Article  CAS  Google Scholar 

  • Xiao WK, Xu ML, Zhao JR, Wang FG, Li JS, Dai JR (2006) Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet 113:63–72

    Article  CAS  Google Scholar 

  • Yan JB, Tang JH, Meng YJ, Ma XQ, Teng WT, Subhash C, Li L, Li JS (2006) Improving QTL mapping resolution based on genotypic sampling-a case using a RIL population. Acta Genet Sin 33:617–624

    Article  PubMed  Google Scholar 

  • Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102:15383–15388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the national outstanding youth foundation of China, ‘Construction of a linkage map for genome-wide resistance gene analogs and isolation of important genes in maize’, Grant No. 30525035; the national ‘863’ high-tech program of China, ‘Functional genomics on resistance to diseases, tolerance to abiotic stress, and grain quality in maize’, Grant No. 2006AA10A107; and the natural scientific foundation of Beijing, Grant No. 5060001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Xu.

Additional information

Communicated by T. Lübberstedt.

Wenkai Xiao, Jing Zhao and Shengci Fan have contributed equally to this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 248 kb)

122_2007_583_MOESM2_ESM.doc

Supplementary Table 1 A summarization of the 228 genome-wide maize RGAs, including the known resistance genes used for data-mining maize EST databases, R-gene-like unigene/EST, RGA IDs and their chromosomal locations, and mapping approaches used in the present study (DOC 581 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, W., Zhao, J., Fan, S. et al. Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theor Appl Genet 115, 501–508 (2007). https://doi.org/10.1007/s00122-007-0583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0583-4

Keywords

Navigation