Skip to main content
Log in

Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Apomixis in plants is a form of clonal reproduction through seeds. A BAC clone linked to apomictic reproduction in Paspalum simplex was used to locate the apomixis locus on meiotic chromosome preparations. Fluorescent in situ hybridisation revealed the existence of a single locus embedded in a heterochromatin-poor region not adjacent to the centromere. We report here for the first time information regarding the sequencing of a large DNA clone from the apomixis locus. The presence of two genes whose rice homologs were mapped on the telomeric part of the long arm of rice chromosome 12 confirmed the strong synteny between the apomixis locus of P. simplex with the related area of the rice genome at the map level. Comparative analysis of this region with rice as representative of a sexual species revealed large-scale rearrangements due to transposable elements and small-scale rearrangements due to deletions and single point mutations. Both types of rearrangements induced the loss of coding capacity of large portions of the “apomictic” genes compared to their rice homologs. Our results are discussed in relation to the use of rice genome data for positional cloning of apomixis genes and to the possible role of rearranged supernumerary genes in the apomictic process of P. simplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Peggy Ozias-Akins P (2004) High resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Akiyama Y, Hanna WW, Peggy Ozias-Akins P (2005) High resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet DOI: 10.1007/s00122-005-0020-5

  • Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC, London

    Google Scholar 

  • Battini JL, Rasko JA, Miller AD (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein–coupled signal transduction. Proc Natl Acad Sci USA 96:1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Bender J (2004) Chromatin–based silencing mechanisms. Curr Opin Plant Biol 7:521–526

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ramakrishna W (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    Article  PubMed  CAS  Google Scholar 

  • Caceres ME, Pupilli F, Quarin CL, Arcioni S (1999) Feulgen densitometry of embryo sac permits discrimination between sexual and apomictic Paspalum simplex. Euphytica 110:161–167

    Article  Google Scholar 

  • Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J (2004) Sequencing of the Triticum monococcum Hardness locus reveals good microcolinearity with rice. Mol Genet Genomics 271:377–386

    Article  PubMed  CAS  Google Scholar 

  • Chen M, SanMiguel P, de Oliveira AC, Woo SS, Zhang H, Wing RA, Bennetzen JL (1997) Microcolinearity in sh2-homologous regions of the maize, rice and sorghum genomes. Proc Natl Acad Sci USA 94:3431–3435

    Article  PubMed  CAS  Google Scholar 

  • de Jong H (2003) Visualizing DNA domain and sequences by microscopy: a fifty-year history of molecular cytogenetics. Genome 46:943–946

    Article  PubMed  Google Scholar 

  • Delaney D, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995) Cytologically based physical map of the group-3 chromosomes of wheat. Theor Appl Genet 91:568–573

    CAS  Google Scholar 

  • Donnison IS, OSullivan DM, Thomas A, Canter P, Moore B, Armstead I, Thomas H, Edwards KJ, King IP (2005) Construction of a Festuca pratensis BAC library for map-based cloning in Festulolium substitution lines. Theor Appl Genet 110:846–851

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8665–8670

    Article  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Goel S, Chen Z, Conner JA Akiyama Y, Hanna WW, Peggy Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporus embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    PubMed  CAS  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzales de Leon D, Savidan S (1998) Mapping diplosporus apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39

    Article  PubMed  Google Scholar 

  • Grossniklaus U (2001) From sexuality to apomixis: molecular and genetic approaches. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRS, Montpellier, European Community DG VI, Mexico City, pp 168–211

  • Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58

    Article  PubMed  CAS  Google Scholar 

  • Hardwick KG, Lewis MJ, Semenza J, Dean N, Pelham HR (1990) ERD1 a yeast gene required for the retention of luminal endoplasmic reticulum proteins affects glycoprotein processing in the Golgi apparatus. EMBO J 9:623–630

    PubMed  CAS  Google Scholar 

  • Koltunow A, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2004) Epistasis underlying female sterility detected in hybrid breakdown in a Japonica-Indica cross of rice (Oryza sativa). Theor Appl Genet 110:346–355

    Article  PubMed  CAS  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519

    Article  PubMed  CAS  Google Scholar 

  • Liu YS, Zhu LH, Sun JS, Chen Y (2001) Mapping QTLs for defective female gametophyte development in an inter-subspecific cross in Oryza sativa L. Theor Appl Genet 102:1243–1251

    Article  CAS  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Jhori EM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 475–518

    Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Akiyama Y, Hanna WW (2003) Molecular characterization of the genomic region linked to apomixis in Pennisetum/Cenchrus. Funct Integr Genomics 3:94–104

    Article  PubMed  CAS  Google Scholar 

  • Pessino SC, Ortiz JPA, Leblanc O, do Valle CB, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444

    Article  CAS  Google Scholar 

  • Pupilli F, Labombarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Pupilli F, Martinez EJ, Busti A, Calderini O, Quarin CL Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Gen Genomics 270:539–548

    Article  CAS  Google Scholar 

  • Roche D, Cong P, Chen Z, Hanna WW, Gustine DL, Sherwood R, Ozias-Akins P (1999) An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19:203–208

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Conner JA, Budiman MA, Frisch D, Wing R, Hanna WW, Ozias-Akins P (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Hanna WW, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Sherman JD, Stack SM (1995) Two dimensional spreads of synaptonemal complexes from solanaceous plants VI. High resolution recombination nodule map of tomato (Lycopersicon esculentum). Genetics 141:683–708

    PubMed  CAS  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologous sequences in grass genomes. Genome Res 12:1459–1555

    Article  CAS  Google Scholar 

  • Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J (1995) Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit. J Biol Chem 270:25435–25344

    Article  PubMed  CAS  Google Scholar 

  • Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers’ field? Nat Biotechnol 22:687–691

    Article  PubMed  CAS  Google Scholar 

  • Stein J, Quarin CL, Martinez EJ, Pessino SC, Ortiz JP (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Yamaguchi Y, Kato H, Ikehashi H (1996) Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theor Appl Genet 92:183–190

    Article  CAS  Google Scholar 

  • Wu P, Zhang G, Huang N, Ladha JH (1995) Non-allelic interaction conditioning spikelet sterility in an F2 population of indica/japonica cross of rice. Theor Appl Genet 91:825–829

    CAS  Google Scholar 

  • Zhong XB, de Jong HJ, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the European Union as part of the project “Natural apomixis as a novel tool in plant breeding (ApoTool),” contract number QLG2-2000-00603 of the Quality of Life and Management of Living Resources section and by grant A2 of the Netherlands Plant Genomics Network “BioSystems Genomics”, CBSG (S.C.dV.). Contribution No. 69 from the Institute of Plant Genetics-CNR, of Perugia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Pupilli.

Additional information

Communicated by S. J. Knapp

Ornella Calderini and Song B. Chang have contributed equally to this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderini, O., Chang, S.B., de Jong, H. et al. Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112, 1179–1191 (2006). https://doi.org/10.1007/s00122-006-0220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0220-7

Keywords

Navigation