Skip to main content
Log in

Two point mutations identified in emmer wheat generate null Wx-A1 alleles

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In this report, the Wx-A1 mutations carried by a Triticum dicoccoides line from Israel and a Triticum dicoccum line from Yugoslavia are characterized. A single nucleotide insertion in the T. dicoccoides null allele and a single nucleotide deletion in the T. dicoccum null allele each cause frameshift mutations that induce premature termination codons more than 55 nucleotides upstream of the last exon-exon junction. In both mutants, Wx-A1 transcripts were detectable in 10 day post-anthesis endosperm by relative RT-PCR. However, transcript levels of the T. dicoccoides and T. dicoccum null alleles were reduced to approximately 6.5 and 1.5% of wild-type, respectively. Therefore, the lack of Wx-A1 protein in the mutants appears to be largely due to nonsense-mediated mRNA decay. The two mutations described here arose independently, and are not related to either of the Wx-A1 mutations identified in common wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bell GDH (1987) The history of wheat cultivation. In: Lupton FGH (ed) Wheat breeding. Chapman and Hall, New York, pp 31–49

    Google Scholar 

  • Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    Article  CAS  PubMed  Google Scholar 

  • Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    Article  CAS  PubMed  Google Scholar 

  • Dehesh K, Franci C, Parks BM, Seeley KA, Short TW, Tepperman JM, Quail PH (1993) Arabidopsis HY8 locus encodes phytochrome A. Plant Cell 5:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Demeke T, Hucl P, Nair RB, Nakamura T, Chibbar RN (1997) Evaluation of Canadian and other wheats for waxy proteins. Cereal Chem 74:442–444

    CAS  Google Scholar 

  • Dickey LF, Nguyen TT, Allen GC, Thompson WF (1994) Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell 6:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Domon E, Fujita M, Ishikawa N (2002) The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from East Asia. Theor Appl Genet 104:132–138

    Article  CAS  PubMed  Google Scholar 

  • Eriksson G (1970) The waxy character. Hereditas 63:180–204

    Google Scholar 

  • Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  CAS  PubMed  Google Scholar 

  • Graybosch RA, Peterson CJ, Hansen LE, Rahman S, Hill A, Skerritt JH (1998) Identification and characterization of U.S. wheats carrying null alleles at the wx loci. Cereal Chem 75:162–165

    CAS  Google Scholar 

  • Hirano HY, Eiguchi M, Sano Y (1998) A single base change altered the regulation of the waxy gene at the posttranscriptional level during the domestication of rice. Mol Biol Evol 15:978–987

    CAS  PubMed  Google Scholar 

  • Isshiki M, Morino K, Nakajima M, Okagaki RJ, Wessler SR, Izawa T, Shimamoto K (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15:133–138

    Article  CAS  PubMed  Google Scholar 

  • Isshiki M, Yamamoto Y, Satoh H, Shimamoto K (2001) Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol 125:1388–1395

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, Schipper RD, Goldberg RB (1989) A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos. Plant Cell 1:427–435

    Article  CAS  PubMed  Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39

    Google Scholar 

  • Maquat LE (2002) NASty effects on fibrillin pre-mRNA splicing: another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes Dev 16:1743–1753

    Article  CAS  PubMed  Google Scholar 

  • Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    Article  CAS  PubMed  Google Scholar 

  • Marchant A, Bennett MJ (1998) The Arabidopsis AUX1 gene: a model system to study mRNA processing in plants. Plant Mol Biol 36:463–471

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993a) Decrease of waxy (Wx) protein in two common wheat cultivars with low amylose content. Plant Breed 111:99–105

    CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S (1993b) Identification of three Wx proteins in wheat (Tritium aestivum L.). Biochem Genet 31:75–86

    CAS  PubMed  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 248:253–259

    CAS  PubMed  Google Scholar 

  • Nakamura T, Vrinten P, Saito M, Konda M (2002) Rapid classification of partial waxy wheats using PCR-based markers. Genome 45:1150–1156

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Taradriz MT, Rodriguez-Quijano M, Carrillo JM (2000) Polymorphism of waxy proteins in Spanish durum wheats. Plant Breed 119:277–279

    Article  Google Scholar 

  • Patron NJ, Smith AM, Fahy BF, Hylton CM, Naldrett MJ, Rossnagel BG, Denyer K (2002) The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5′-non-coding region. Plant Physiol 130:190–198

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Konda M, Vrinten P, Nakamura K, Nakamura T (2004) Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor Appl Genet 108:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Schell T, Kulozik AE, Hentze MW (2002) Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol 3:10061–10066

    Article  Google Scholar 

  • Urbano M, Margiotta B, Colaprico G, Lafiandra D (2002) Waxy proteins in diploid, tetraploid and hexaploid wheats. Plant Breed 121:465–469

    Article  CAS  Google Scholar 

  • Voelker TA, Moreno J, Chrispeels MJ (1990) Expression analysis of a pseudogene in transgenic tobacco: a frameshift mutation prevents mRNA accumulation. Plant Cell 2:255–261

    Article  CAS  PubMed  Google Scholar 

  • Vrinten P, Nakamura T, Yamamori M (1999) Molecular characterization of waxy mutations in wheat. Mol Gen Genet 261:463–471

    Article  CAS  PubMed  Google Scholar 

  • Wagner E, Lykke-Andersen J (2002) mRNA surveillance: the perfect persist. J Cell Sci 115:3033–3038

    CAS  PubMed  Google Scholar 

  • van de Wal M, D’Hulst C, Vincken JP, Buléon A, Visser R, Ball S (1998) Amylose is synthesized in vitro by extension of and cleavage from amylopectin. J Biol Chem 273:22232–22240

    Article  PubMed  Google Scholar 

  • Wessler SR, Varagona MJ (1985) Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc Natl Acad Sci USA 82:4177–4181

    CAS  PubMed  Google Scholar 

  • Wessler SR, Baran G, Varagona M (1987) The maize transposable element Ds is spliced from RNA. Science 237:916–918

    CAS  PubMed  Google Scholar 

  • Wilusz CJ, Wang W, Peltz SW (2001) Curbing the nonsense: the activation and regulation of mRNA surveillance. Genes Dev 15:2781–2785

    CAS  PubMed  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89:179–184

    CAS  Google Scholar 

  • Yamamori M, Nakamura T, Nagamine T (1995) Polymorphism of two waxy proteins in the emmer group of tetraploid wheat, Triticum dicoccoides, T. dicoccum, and T. durum. Plant Breed 114:215–218

    CAS  Google Scholar 

  • Yamamori M, Nakamura T, Kiribuchi-Otobe C (1998) Waxy protein alleles in common and emmer wheat germplasm. Misc Publ Natl Inst Agrobiol Resour 12:57–104

    Google Scholar 

  • Yan L, Bhave M (2000) Sequences of the waxy loci of wheat: utility in analysis of waxy proteins and developing molecular markers. Biochem Genet 38:391–411

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Bhave M (2001) Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. Zhukovskyi and implications for evolution of wheat. Genome 44:582–588

    Article  CAS  PubMed  Google Scholar 

  • Zhao XC, Batey IL, Sharp PJ, Crosbie G, Barclay I, Wilson R, Morell MK, Appels R (1998) A single genetic locus associated with starch granule properties and noodle quality in wheat. J Cereal Sci 27:7–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Shoji Ohta and Makoto Yamamori, and NIAS for providing emmer wheat seeds. We also thank Dr. Patricia Vrinten for helpful discussions and useful editorial comments on the manuscript. This study was supported by a grant from the Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nakamura.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M., Nakamura, T. Two point mutations identified in emmer wheat generate null Wx-A1 alleles. Theor Appl Genet 110, 276–282 (2005). https://doi.org/10.1007/s00122-004-1830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1830-6

Keywords

Navigation