Skip to main content
Log in

Moderne Schnittbildgebung für urologische Erkrankungen

Modern tomography imaging techniques in urological diseases

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Radiologische Bildgebung spielt eine wichtige Rolle bei Detektion, Staging und Nachsorge von urologischen Tumoren. Grundlegende Therapieentscheidungen sowohl bei onkologischen (operative vs. systemische Therapie, z. B. bei Hodentumoren) als auch bei nichtonkologischen Pathologien (interventionelle vs. konservative Therapie z. B. bei Harnleitersteinen) hängen zum Großteil von der durchgeführten Schnittbildgebung ab. Die Computertomographie (CT) hat aufgrund ihrer fast ubiquitären Verfügbarkeit, Schnelligkeit und Kosteneffizienz nicht nur in der Abklärung von abdominellem Traumen und nicht-traumatischen Notfällen, sondern auch beim Staging und Follow-up onkologischer Patienten ihren Platz gefunden. Die Indikation zur CT sollte jedoch unter Berücksichtigung der Strahlenbelastung streng indiziert werden. Eine eingeschränkte Nierenfunktion und Allergien auf jodhaltige Kontrastmittel limitieren zudem den Einsatz der CT. Die Magnetresonanztomographie (MRT) stellt ohne den Einsatz ionisierender Strahlung mit funktionell spezifischen Protokollen und hohem Weichteilkontrast eine gute Alternative für viele Einsatzgebiete in der onkologischen und nichtonkologischen Bildgebung dar.

Ziel der Arbeit

Nachfolgend soll eine Übersicht über wesentliche Indikationen der CT-/MRT-Abdomen/-Becken in der Urologie gegeben und deren Limitationen aufgezeigt werden.

Schlussfolgerung

Die Anwendungsgebiete zwischen CT und MRT überschneiden sich zunehmend, da durch neuste Entwicklungen in der CT die Strahlenexposition stetig reduziert und gleichzeitig die Kontrastinformation erhöht werden kann, während sich parallel dazu in der MRT die Untersuchungsgeschwindigkeit und Robustheit bedeutend verbessern.

Abstract

Background

Radiologic imaging is important for the detection, staging and follow-up of urological tumors. Basic therapy decisions for both oncological (surgical vs. systemic therapy, e.g. in testicular cancer) and non-oncological pathologies (interventional vs. conservative therapy, e.g. for ureteral stones) depend largely on the tomographic imaging performed. Due to its almost ubiquitous availability, speed and cost-effectiveness, computed tomography (CT) plays an important role not only in the clarification of abdominal trauma and non-traumatic emergencies, but also in staging and follow-up of oncological patients. However, the level of radiation exposure, impaired renal function and allergies to iodinated contrast media limit the use of CT. Magnetic resonance imaging (MRI) can be a good alternative for many areas of application in oncological and non-oncological imaging due to its high soft tissue differentiation and functional-specific protocols but without the use of ionizing radiation.

Aim

In the following, the main indications of abdominal and pelvic CT and MRI in urology and their limitations are summarized.

Results

The areas of application between CT and MRI are increasingly overlapping, since the latest developments in CT continue to further reduce radiation exposure and increase contrast information, while the speed and robustness of MRI are significantly improving at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Turk C et al (2016) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69(3):468–474

    Article  PubMed  Google Scholar 

  2. Zheng X et al (2016) Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: a meta-analysis. Eur J Radiol 85(10):1843–1848

    Article  PubMed  Google Scholar 

  3. Andrabi Y et al (2015) Advances in CT imaging for urolithiasis. Indian J Urol 31(3):185–193

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rob S et al (2017) Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: is there a difference? Results from a systematic review of the literature. Clin Radiol 72(1):11–15

    Article  CAS  PubMed  Google Scholar 

  5. Rouprêt M et al (2021) Upper urinary tract urothelial cell carcinoma, EAU guidelines ISBN 978-94-92671-13‑4 (Edn. presented at the EAU Annual Congress Milan)

    Google Scholar 

  6. Abreu-Gomez J et al (2019) Update on MR urography (MRU): technique and clinical applications. Abdom Radiol (NY) 44(12):3800–3810

    Article  Google Scholar 

  7. Silverman SG et al (2019) Bosniak classification of cystic renal masses, version 2019: an update proposal and needs assessment. Radiology 292(2):475–488

    Article  PubMed  Google Scholar 

  8. Ljungberg B, Albiges L, Bedke J, Bex A, Capitano U, Giles RH, Hora M, Klatte T, Lam T, Macroni L, Powels T, Volpe A (2021) Renal cell carcinoma

    Google Scholar 

  9. Sevcenco S et al (2017) Malignancy rates and diagnostic performance of the Bosniak classification for the diagnosis of cystic renal lesions in computed tomography—a systematic review and meta-analysis. Eur Radiol 27(6):2239–2247

    Article  PubMed  Google Scholar 

  10. Hindman NM, Hecht EM, Bosniak MA (2014) Follow-up for Bosniak category 2F cystic renal lesions. Radiology 272(3):757–766

    Article  PubMed  Google Scholar 

  11. Lucocq J et al (2020) Complex renal cysts (Bosniak 〉/= IIF): outcomes in a population-based cohort study. Cancers (Basel) 12(9):2549. https://doi.org/10.3390/cancers12092549

    Article  Google Scholar 

  12. Bosniak MA (2012) The Bosniak renal cyst classification: 25 years later. Radiology 262(3):781–785

    Article  PubMed  Google Scholar 

  13. Lucocq J et al (2021) Complex renal cysts (Bosniak 〉/=IIF): interobserver agreement, progression and malignancy rates. Eur Radiol 31(2):901–908

    Article  PubMed  Google Scholar 

  14. Schoots IG et al (2017) Bosniak classification for complex renal cysts reevaluated: a systematic review. J Urol 198(1):12–21

    Article  PubMed  Google Scholar 

  15. Shaish H et al (2019) Active surveillance of small (〈 4 cm) Bosniak category 2F, 3, and 4 renal lesions: what happens on imaging follow-up? AJR Am J Roentgenol 212(6):1215–1222

    Article  PubMed  Google Scholar 

  16. Tse JR et al (2021) Bosniak classification of cystic renal masses version 2019: comparison of categorization using CT and MRI. AJR Am J Roentgenol 216(2):412–420

    Article  PubMed  Google Scholar 

  17. Edney E et al (2021) Bosniak classification of cystic renal masses, version 2019: interpretation pitfalls and recommendations to avoid misclassification. Abdom Radiol (NY) 46(6):2699–2711

    Article  Google Scholar 

  18. Bagheri MH et al (2017) Advances in medical imaging for the diagnosis and management of common genitourinary cancers. Urol Oncol 35(7):473–491

    Article  PubMed  PubMed Central  Google Scholar 

  19. Graumann O et al (2013) Evaluation of Bosniak category IIF complex renal cysts. Insights Imaging 4(4):471–480

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leveridge MJ et al (2010) Imaging renal cell carcinoma with ultrasonography, CT and MRI. Nat Rev Urol 7(6):311–325

    Article  PubMed  Google Scholar 

  21. Sacco E et al (2011) Imaging of renal cell carcinoma: state of the art and recent advances. Urol Int 86(2):125–139

    Article  PubMed  Google Scholar 

  22. Sankineni S et al (2016) Imaging of renal cell carcinoma. Urol Oncol 34(3):147–155

    Article  PubMed  Google Scholar 

  23. Kang SK, Chandarana H (2012) Contemporary imaging of the renal mass. Urol Clin North Am 39(2):161–170

    Article  PubMed  Google Scholar 

  24. Halefoglu AM, Ozagari AA (2021) Tumor grade estimation of clear cell and papillary renal cell carcinomas using contrast-enhanced MDCT and FSE T2 weighted MR imaging: radiology-pathology correlation. Radiol Med 126(9):1139–1148

    Article  PubMed  Google Scholar 

  25. Young JR et al (2013) Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 267(2):444–453

    Article  PubMed  Google Scholar 

  26. Griffin N, Gore ME, Sohaib SA (2007) Imaging in metastatic renal cell carcinoma. AJR Am J Roentgenol 189(2):360–370

    Article  PubMed  Google Scholar 

  27. Mueller-Lisse UG, Mueller-Lisse UL (2010) Imaging of advanced renal cell carcinoma. World J Urol 28(3):253–261

    Article  PubMed  Google Scholar 

  28. Song S, Park BK, Park JJ (2016) New radiologic classification of renal angiomyolipomas. Eur J Radiol 85(10):1835–1842

    Article  PubMed  Google Scholar 

  29. Jinzaki M et al (2014) Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging 39(3):588–604

    Article  PubMed  PubMed Central  Google Scholar 

  30. Runowska M, Majewski D, Puszczewicz M (2016) Retroperitoneal fibrosis—the state-of-the-art. Reumatologia 54(5):256–263

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan TJ et al (2014) Extrapancreatic findings of IgG4-related disease. Clin Radiol 69(2):209–218

    Article  CAS  PubMed  Google Scholar 

  32. Caiafa RO et al (2013) Retroperitoneal fibrosis: role of imaging in diagnosis and follow-up. Radiographics 33(2):535–552

    Article  PubMed  Google Scholar 

  33. Gao L et al (2015) Computed tomography parameters can be used as predictive markers for the improvement of renal function in patients with retroperitoneal fibrosis. Clin Exp Rheumatol 33(6):871–876

    CAS  PubMed  Google Scholar 

  34. Viteri B et al (2020) State-of-the-art renal imaging in children. Pediatrics 145(2):e20190829

    Article  PubMed  Google Scholar 

  35. Gabriele D et al (2016) Is there still a role for computed tomography and bone scintigraphy in prostate cancer staging? An analysis from the EUREKA‑1 database. World J Urol 34(4):517–523

    Article  CAS  PubMed  Google Scholar 

  36. Mirmomen SM et al (2019) Preoperative imaging for locoregional staging of bladder cancer. Abdom Radiol (NY) 44(12):3843–3857

    Article  Google Scholar 

  37. Mottet N et al (2021) Prostate cancer in EAU guidelines ISBN 978-94-92671-13‑4 (Edn. presented at the EAU Annual Congress Milan)

    Google Scholar 

  38. Kiss B, Thoeny HC, Studer UE (2016) Current status of lymph node imaging in bladder and prostate cancer. Urology 96:1–7

    Article  PubMed  Google Scholar 

  39. Thoeny HC et al (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 273(1):125–135

    Article  PubMed  Google Scholar 

  40. Briganti A et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61(3):480–487

    Article  PubMed  Google Scholar 

  41. Gandaglia G et al (2017) Development and internal validation of a novel model to identify the candidates for extended pelvic lymph node dissection in prostate cancer. Eur Urol 72(4):632–640

    Article  PubMed  Google Scholar 

  42. Turkbey B et al (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76(3):340–351

    Article  PubMed  Google Scholar 

  43. Turkbey B et al (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186(5):1818–1824

    Article  PubMed  PubMed Central  Google Scholar 

  44. Panebianco V et al (2018) Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (vesical imaging-reporting and data system). Eur Urol 74(3):294–306

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pecoraro M et al (2020) Overview of VI-RADS in bladder cancer. AJR Am J Roentgenol 214(6):1259–1268

    Article  PubMed  Google Scholar 

  46. Akcay A et al (2021) VI-RADS score and tumor contact length in MRI: a potential method for the detection of muscle invasion in bladder cancer. Clin Imaging 77:25–36

    Article  PubMed  Google Scholar 

  47. Juri H et al (2020) Staging of bladder cancer with multiparametric MRI. Br J Radiol 93(1112):20200116

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thomsen, H.S.e.a.C.M.S.C.o.t.E.S.o.U.R., ESUR Guidelines on Contrast Agents Version 10.0. https://www.esur.org/fileadmin/content/2019/ESUR_Guidelines_10.0_Final_Version.pdf, 2018(European Society of Urogenital Radiology). Zugegriffen: 13.11.2019

  49. Bhargava V et al (2021) Nephrogenic systemic fibrosis: a frivolous entity. World J Nephrol 10(3):29–36

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shamam YM, De Jesus O (2021) Nephrogenic systemic fibrosis. StatPearls, Treasure Island (FL)

    Google Scholar 

  51. Weinreb JC et al (2021) Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American college of radiology and the national kidney foundation. Radiology 298(1):28–35

    Article  PubMed  Google Scholar 

  52. McCartney MM et al (1999) Metformin and contrast media—a dangerous combination? Clin Radiol 54(1):29–33

    Article  CAS  PubMed  Google Scholar 

  53. Berrington de Gonzalez A et al (2020) Epidemiological studies of low-dose ionizing radiation and cancer: rationale and framework for the monograph and overview of eligible studies. J Natl Cancer Inst Monogr 2020(56):97–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sudarski S et al (2014) Objective and subjective image quality of liver parenchyma and hepatic metastases with virtual monoenergetic dual-source dual-energy CT reconstructions: an analysis in patients with gastrointestinal stromal tumor. Acad Radiol 21(4):514–522

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gita M. Schoenberg.

Ethics declarations

Interessenkonflikt

G.M. Schoenberg, V. Schuetz, J.N. Nyarangi-Dix, S.J. Diehl, R. Heiss und B. Adamietz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoenberg, G.M., Schuetz, V., Nyarangi-Dix, J.N. et al. Moderne Schnittbildgebung für urologische Erkrankungen. Urologe 61, 374–383 (2022). https://doi.org/10.1007/s00120-022-01792-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-022-01792-w

Schlüsselwörter

Keywords

Navigation