Skip to main content
Log in

Kontrastmittel – Handlungsempfehlungen für die Praxis

Contrast media – Guidelines for practical use

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Kontrastmittel (KM) sind aus der modernen radiologischen Diagnostik nicht mehr wegzudenken. Sie liefern in der Multidetektor-Computertomographie (MDCT) und Magnetresonanztomographie (MRT) essenzielle Informationen u. a. bei vaskulären, entzündlichen und onkologischen Fragestellungen, die sonst nicht beantwortet werden könnten. Die wichtigsten Gruppen sind jodhaltige und gadolinumhaltige Kontrastmittel, welche vorwiegend intravenös eingesetzt werden. Zu den seltenen unerwünschten Wirkungen beider Substanzgruppen gehören die mögliche akute Niereninsuffizienz (AKI), häufiger treten allergische und chemotoxische Reaktionen auf. Die nephrogene Fibrose ist seit der Etablierung von Guidelines nicht mehr nachgewiesen worden. Gadoliniumablagerungen im Zentralnervensystem (ZNS), deren klinische Bedeutung nach wie vor unklar ist, sind seit einigen Jahren ein aktuelles Thema. Ab einem Schwellenwert der Nierenfunktion mit einer eGFR von <45 bzw. <30 ml/min wird eine Hydrierung des Patienten bzw. eine strengere Indikationsstellung empfohlen. Low-kV und DE-Scanprotokolle in der MDCT helfen, die benötigte Kontrastmittelmenge zu reduzieren. In der MRT sollten bis auf zugelassene Indikationen nur makrozyklische Substanzen verwendet werden. Die Anwendung in der Schwangerschaft, während der Laktation und bei Kindern ist immer einer sorgfältigen Nutzen-Risiko-Analyse zu unterziehen und ebenso ein wichtiges Thema dieses Übersichtsartikels. Die adäquate Patientenaufklärung und rechtliche Aspekte bei nichtzugelassenen Anwendungen sind unverzichtbarer Bestandteil im täglichen klinischen Einsatz. Das Wissen um die sachgerechte Anwendung der vielfältigen zugelassenen Kontrastmittel ist ständig zu aktualisieren und zu erweitern.

Abstract

Contrast agents have become an indispensable part of everyday life in diagnostic radiology. In multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI), they provide essential diagnostic information, especially for vascular, inflammatory or oncologic diseases, which otherwise could not be answered. The two most important groups are iodine- and gadolinium-containing contrast agents. Rare side effects include PC-AKI (post-contrast acute kidney injury); more common are allergic and chemotoxic reactions. Since the introduction of guidelines, nephrogenic fibrosis has not been reported anymore, whereas gadolinium deposition in the central nervous system (CNS) has become a new topic. Concerning contrast media use in patients with reduced renal function, at a eGFR threshold of <45 ml/min or <30 ml/min, hydration and a review of indication for enhanced MDCT, depending on the application, is recommended. Low kV and DE-scan protocols with MDCT can help to reduce the amount of iodinated contrast agents. In MRI examinations, only macrocyclic contrast agents should be used for enhanced MRI exams. There has to be a careful risk–benefit analysis with enhanced studies in pregnancy, during lactation and in the pediatric population. Patient information and legal aspects with nonapproved indications are indispensable parts of daily clinical routine. The continuous updating and broadening of knowledge regarding the appropriate use of the various contrast agents has to be an integral part of clinical diagnostic radiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Li X et al (2015) Clinical observation of the adverse drug reactions caused by non-ionic iodinated contrast media: Results from 109,255 cases who underwent enhanced CT examination in Chongqing, China. Br J Radiol 88(1047):20140491

    Article  CAS  Google Scholar 

  2. Zahringer C et al (2015) Serum creatinine measurements: Evaluation of a questionnaire according to the ESUR guidelines. Acta Radiol 56(5):628–634

    Article  Google Scholar 

  3. Ledermann HP et al (2010) Screening for renal insufficiency following ESUR (European Society of Urogenital Radiology) guidelines with on-site creatinine measurements in an outpatient setting. Eur Radiol 20(8):1926–1933

    Article  CAS  Google Scholar 

  4. Jin R et al (2008) Estimated glomerular filtration rate and renal function. Ann Thorac Surg 86(1):1–3

    Article  Google Scholar 

  5. European Society of Urogenital Radiology (2019) ESUR Guidelines: Contrast Media Safety Guidelines 10.0. http://www.esur.org/esur-guidelines/. Zugegriffen: 18.3.2019

    Google Scholar 

  6. Mueller C (2006) Prevention of contrast-induced nephropathy with volume supplementation. Kidney Int Suppl 69(100):S16–S19

    Article  Google Scholar 

  7. Nijssen EC et al (2017) Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): A prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 389(10076):1312–1322

    Article  Google Scholar 

  8. Brown JR et al (2009) Sodium bicarbonate plus N‑acetylcysteine prophylaxis: A meta-analysis. JACC Cardiovasc Interv 2(11):1116–1124

    Article  Google Scholar 

  9. Sadat U (2014) N‑acetylcysteine in contrast-induced acute kidney injury: Clinical use against principles of evidence-based clinical medicine! Expert Rev Cardiovasc Ther 12(1):1–3

    Article  CAS  Google Scholar 

  10. Inda-Filho AJ et al (2014) Do intravenous N‑acetylcysteine and sodium bicarbonate prevent high osmolal contrast-induced acute kidney injury? A randomized controlled trial. PLoS ONE 9(9):e107602

    Article  Google Scholar 

  11. Tepel M et al (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343(3):180–184

    Article  CAS  Google Scholar 

  12. Ehrmann S et al (2017) Contrast-associated acute kidney injury in the critically ill: Systematic review and Bayesian meta-analysis. Intensive Care Med 43(6):785–794

    Article  Google Scholar 

  13. McDonald JS et al (2017) Post-contrast acute kidney injury in intensive care unit patients: A propensity score-adjusted study. Intensive Care Med 43(6):774–784

    Article  Google Scholar 

  14. Newhouse JH et al (2008) Frequency of serum creatinine changes in the absence of iodinated contrast material: Implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol 191(2):376–382

    Article  Google Scholar 

  15. Wilhelm-Leen E, Montez-Rath ME, Chertow G (2017) Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol 28(2):653–659

    Article  Google Scholar 

  16. Kumar N et al (2009) Effect of elective coronary angiography on glomerular filtration rate in patients with advanced chronic kidney disease. Clin J Am Soc Nephrol 4(12):1907–1913

    Article  Google Scholar 

  17. McDonald RJ et al (2014) Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 273(3):714–725

    Article  Google Scholar 

  18. Schmucker J et al (2018) Predictors of acute kidney injury in patients admitted with ST-elevation myocardial infarction—Results from the Bremen STEMI-Registry. Eur Heart J Acute Cardiovasc Care 7(8):710–722

    Article  Google Scholar 

  19. Reinecke H et al (2007) A randomized controlled trial comparing hydration therapy to additional hemodialysis or N‑acetylcysteine for the prevention of contrast medium-induced nephropathy: the Dialysis-versus-Diuresis (DVD) Trial. Clin Res Cardiol 96(3):130–139

    Article  CAS  Google Scholar 

  20. Pistolesi V et al (2018) Contrast medium induced acute kidney injury: A narrative review. J Nephrol 31(6):797–812

    Article  CAS  Google Scholar 

  21. Rasuli P, French GJ, Hammond DI (1998) Metformin hydrochloride all right before, but not after, contrast medium administration. Radiology 209(2):586–587

    Article  CAS  Google Scholar 

  22. Pond GD et al (1996) Metformin and contrast media: Genuine risk or witch hunt? Radiology 201(3):879–880

    Article  CAS  Google Scholar 

  23. Nawaz S et al (1998) Clinical risk associated with contrast angiography in metformin treated patients: A clinical review. Clin Radiol 53(5):342–344

    Article  CAS  Google Scholar 

  24. Cowper SE et al (2001) Nephrogenic fibrosing dermopathy. Am J Dermatopathol 23(5):383–393

    Article  CAS  Google Scholar 

  25. Grobner T (2006) Gadolinium—A specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108

    Article  CAS  Google Scholar 

  26. Schieda N et al (2018) Gadolinium-based contrast agents in kidney disease: Comprehensive review and clinical practice guideline issued by the Canadian association of radiologists. Can Assoc Radiol J 69(2):136–150

    Article  Google Scholar 

  27. Endrikat J et al (2018) 10 years of nephrogenic systemic fibrosis: A comprehensive analysis of nephrogenic systemic fibrosis reports received by a pharmaceutical company from 2006 to 2016. Invest Radiol 53(9):541–550

    Article  Google Scholar 

  28. Young LK, Matthew SZ, Houston JG (2019) Absence of potential gadolinium toxicity symptoms following 22,897 gadoteric acid (Dotarem(R)) examinations, including 3,209 performed on renally insufficient individuals. Eur Radiol 29(4):1922–1930

    Article  Google Scholar 

  29. Kondo H et al (2013) Body size indices to determine iodine mass with contrast-enhanced multi-detector computed tomography of the upper abdomen: Does body surface area outperform total body weight or lean body weight? Eur Radiol 23(7):1855–1861

    Article  Google Scholar 

  30. Quaia C (2016) Comparison between 80 kV, 100 kV and 120 kV CT protocols in the assessment of the therapeutic outcome in HCC. Liver Pancreat Sci 1(1):1–4

    Google Scholar 

  31. Euler A et al (2016) Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. Invest Radiol 51(8):491–498

    Article  CAS  Google Scholar 

  32. Euler A et al (2018) Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT. Eur Radiol 28(8):3405–3412

    Article  Google Scholar 

  33. Lenga L et al (2018) Dual-energy CT in patients with colorectal cancer: Improved assessment of hypoattenuating liver metastases using noise-optimized virtual monoenergetic imaging. Eur J Radiol 106:184–191

    Article  Google Scholar 

  34. Goshima S et al (2014) Determination of optimal intravenous contrast agent iodine dose for the detection of liver metastasis at 80-kVp CT. Eur Radiol 24(8):1853–1859

    Article  Google Scholar 

  35. Sadick M et al (1997) Bolus tracking and NaCl bolus in biphasic spiral CT of the abdomen. Rofo 167(4):371–376

    Article  CAS  Google Scholar 

  36. Bader TR, Prokesch RW, Grabenwoger F (2000) Timing of the hepatic arterial phase during contrast-enhanced computed tomography of the liver: Assessment of normal values in 25 volunteers. Invest Radiol 35(8):486–492

    Article  CAS  Google Scholar 

  37. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: Considerations and approaches. Radiology 256(1):32–61

    Article  Google Scholar 

  38. Hojreh A, Dünkelmeyer M (2015) Leitlinie zum Schutz des ungeborenen Lebens. Universitätsklinik für Radiologie und Nuklearmedizin, Wien

    Google Scholar 

  39. Seeliger E et al (2012) Contrast-induced kidney injury: Mechanisms, risk factors, and prevention. Eur Heart J 33(16):2007–2015

    Article  Google Scholar 

  40. Herold CJ, Krestan CR (Hrsg) (2017) Kontrastmittel und Tracer – Was Sie schon immer darüber wissen wollten. Breitenseher Publisher, Horn

    Google Scholar 

  41. Okuda Y et al (1999) Reproductive and developmental toxicity study of gadobenate dimeglumine formulation (E7155) (3)—Study of embryo-fetal toxicity in rabbits by intravenous administration. J Toxicol Sci 24(Suppl 1):79–87

    Article  CAS  Google Scholar 

  42. Jung J-W, Kang H-R, Kim M-H, Lee W, Min K-U, Han M-H, Cho S-H (2012) Immediate Hypersensitivity Reaction to Gadolinium-based MR Contrast Media. Radiology 264(2):414–422

    Article  Google Scholar 

  43. Prince MR, Zhang H, Zou Z, Staron RB, Brill PW (2011) Incidence of Immediate Gadolinium Contrast Media Reactions. American Journal of Roentgenology 196(2):W138–W143

    Article  Google Scholar 

  44. Bruder O, Schneider S, Nothnagel D, Pilz G, Lombardi M, Sinha A et al (2011) Acute Adverse Reactions to Gadolinium-Based Contrast Agents in CMR. JACC: Cardiovascular Imaging 4(11):1171–1176

    PubMed  Google Scholar 

  45. Experte der rtaustria (2018) CIRSmedical: Dokumentationslücken im Arztbrief. https://www.aerztezeitung.at/archiv/oeaez-2018/oeaez-5-10032018/cirsmedical-dokumentationsluecken-im-arztbrief.html (Österreichische Ärztezeitung Nr. 5 / 10.03.2018). Zugegriffen: 18.3.2019

    Google Scholar 

  46. Mervak BM et al (2015) Rates of breakthrough reactions in inpatients at high risk receiving premedication before contrast-enhanced CT. AJR Am J Roentgenol 205(1):77–84

    Article  Google Scholar 

  47. Hawi N et al (2014) Development of compartment syndrome after intravenous administration of an X‑ray contrast medium. Recommendations on acute therapy regimens. Unfallchirurg 117(4):374–379

    Article  CAS  Google Scholar 

  48. Gault DT (1993) Extravasation injuries. Br J Plast Surg 46(2):91–96

    Article  CAS  Google Scholar 

  49. Shaqdan K et al (2014) Incidence of contrast medium extravasation for CT and MRI in a large academic medical centre: A report on 502,391 injections. Clin Radiol 69(12):1264–1272

    Article  CAS  Google Scholar 

  50. Khan MS, Holmes JD (2002) Reducing the morbidity from extravasation injuries. Ann Plast Surg 48(6):628–632 (discussion 632)

    Article  Google Scholar 

  51. Mandlik V, Prantl L, Schreyer AG (2019) Contrast media extravasation in CT and MRI—A literature review and strategies for therapy. Rofo 191(1):25–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Krestan MBA.

Ethics declarations

Interessenkonflikt

C. Krestan gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krestan, C. Kontrastmittel – Handlungsempfehlungen für die Praxis. Radiologe 59, 444–453 (2019). https://doi.org/10.1007/s00117-019-0523-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-019-0523-8

Schlüsselwörter

Keywords

Navigation