Skip to main content
Log in

MR-Spektroskopie bei Hirntumoren

Magnetic resonance spectroscopy of brain tumors

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die konventionelle MRT ermöglicht unter Berücksichtigung klinischer Information bei einem Großteil zerebraler Raumforderungen die richtige Diagnose und Therapie. Einige wichtige Differenzialdiagnosen wie niedrig- vs. hochmaligne Tumore bedürfen allerdings zusätzlicher MR-Methoden.

Fragestellung

Es soll der Stellenwert der MR-Spektroskopie (MRS) bei Hirntumoren kritisch diskutiert werden.

Material und Methoden

Die 1H-MRS misst nicht invasiv Konzentrationen normaler und pathologischer Hirnmetabolite. Sie basiert auf dem Prinzip, dass chemische Protonenverbindungen bestimmter Hirnmetabolite das äußere Magnetfeld fokal abschwächen und die Protonenresonanzfrequenz nach typischen Mustern verändern. Parameterkarten der MRS Imaging (MRSI) bilden zudem Tumorheterogenität und peritumorale Veränderungen ab. Hierbei sind die Muster von N-Acetyl-Aspartat, „total“ Cholin (tCho) oder Kreatin relativ robust. Die Erkennung anderer Metabolite wie Myoinositol, Glutamat, Laktat oder Lipide hängt hingegen stark von Faktoren wie Feldstärke und Echozeit ab.

Ergebnisse

Für solide Hirntumoren gilt, dass die tCho-Signalintensität in vitalem Tumorgewebe mit dem WHO-Grad des Hirntumors, d. h. mit der Malignität ansteigt. Die MRSI hilft, Gliome zu graduieren und den Zielpunkt bei Tumorbiopsien zu bestimmen. Unterschiedliche Verteilungsmuster bzw. spezielle Metabolitensignale erleichtern, zwischen Abszessen, Metastasen, ZNS-Lymphomen und Gliomen zu unterscheiden.

Schlussfolgerung

Die 1H-MRSI liefert diagnostisch wertvolle Informationen zur Differenzialdiagnose und Graduierung von Hirntumoren, allerdings erschweren Artefakte, Signalstärke, Parameterauswahl und fehlende Standardisierung – bislang – deren Einsatz in der Routinediagnostik.

Abstract

Background

Conventional magnetic resonance imaging (MRI) under consideration of clinical information enables the correct diagnosis and therapy for the majority of cerebral space-occupying lesions. Some important differential diagnoses, e. g. low vs. high-grade tumors, require additional MRI methods.

Objective

This article critically discusses the importance of magnetic resonance spectroscopy (1H-MRS) in brain tumors.

Material and methods

The concentration of normal and pathological brain metabolites can be non-invasively measured by 1H-MRS. It is based on the principle that chemical proton compounds of certain brain metabolites focally attenuate the external magnetic field and change the proton resonance frequency according to typical patterns. In addition, parameter maps of MRS imaging (MRSI) can show the tumor heterogeneity as well as changes in the surrounding brain tissue. In this context, the patterns of N‑acetylaspartate, total choline (tCho) and creatine are relatively robust, whereas the patterns of other metabolites, such as myoinositol, glutamate, lactate or lipids greatly depend on the external field strength and echo time.

Results

The signal intensity of tCho in vital tumor tissue increases with the WHO grade of the brain tumor, i.e. increases with the level of malignancy. The use of MRSI facilitates the WHO grading of gliomas by determining target points in biopsies. Different distribution patterns and specific metabolite signals enable a better differentiation between abscesses, metastases, central nervous system (CNS) lymphomas and gliomas.

Conclusion

The use of 1H-MRS provides valuable information on the differential diagnosis and graduation of brain tumors; however, so far artefacts, signal strength, parameter selection and a lack of standardization impede the establishment of 1H-MRS for use in clinical routine diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Abbreviations

(1H)-MRS:

(„Proton) magnetic resonance spectroscopy“

1H MRSI:

„Magnetic resonance spectroscopic imaging“

2-HG:

2-Hydroxyglutarat

ADEM:

„Acute disseminated encephalomyelitis“

CSI:

„Chemical shift imaging“

DWI:

„Diffusion-weighted imaging“

IDH:

Isocitrat-Dehydroxygenase

KM:

Kontrastmittel

MS:

Multiple Sklerose

ppm:

„Parts per million“

tCho:

„Total choline“

tCr:

„Total creatine“

tNAA:

„Total N‑acetyl aspartate“

WHO:

World Health Organization

Literatur

  1. Blasel S, Pfeilschifter W, Jansen V et al (2011) Metabolism and regional cerebral blood volume in autoimmune inflammatory demyelinating lesions mimicking malignant gliomas. J Neurol 258:113–122. doi:10.1007/s00415-010-5703-4

    Article  CAS  PubMed  Google Scholar 

  2. Burtscher IM, Skagerberg G, Geijer B et al (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am J Neuroradiol 21:84–93

    CAS  PubMed  Google Scholar 

  3. Duijn JH, Matson GB, Maudsley AA et al (1992) Human brain infarction: proton MR spectroscopy. Radiology 183:711–718. doi:10.1148/radiology.183.3.1584925

    Article  CAS  PubMed  Google Scholar 

  4. Frahm J, Bruhn H, Gyngell ML et al (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11:47–63

    Article  CAS  PubMed  Google Scholar 

  5. Graham GD, Blamire AM, Rothman DL et al (1993) Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study. Stroke 24:1891–1896

    Article  CAS  PubMed  Google Scholar 

  6. Guillevin R, Menuel C, Duffau H et al (2008) Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neurooncol 87:181–187. doi:10.1007/s11060-007-9508-y

    Article  CAS  PubMed  Google Scholar 

  7. Harting I, Hartmann M, Jost G et al (2003) Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy. Neurosci Lett 342:163–166

    Article  CAS  PubMed  Google Scholar 

  8. Hattingen E, Franz K, Pilatus U et al (2006) Postictal spectroscopy and imaging findings mimicking brain tumor recurrence. J Magn Reson Imaging 24:226–230. doi:10.1002/jmri.20594

    Article  PubMed  Google Scholar 

  9. Hattingen E, Lanfermann H, Quick J et al (2009) 1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGMA 22:33–41. doi:10.1007/s10334-008-0145-z

    Article  CAS  PubMed  Google Scholar 

  10. Hattingen E, Magerkurth J, Pilatus U et al (2011) Combined 1H and 31P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24:536–546. doi:10.1002/nbm.1621

    Article  CAS  PubMed  Google Scholar 

  11. Hattingen E, Raab P, Franz K et al (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241. doi:10.1002/nbm.1186

    Article  CAS  PubMed  Google Scholar 

  12. Hattingen E, Raab P, Franz K et al (2008) Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50:759–767. doi:10.1007/s00234-008-0409-3

    Article  PubMed  Google Scholar 

  13. Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20:293–310. doi:10.1016/j.nic.2010.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  14. Husted CA, Goodin DS, Hugg JW et al (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36:157–165. doi:10.1002/ana.410360207

    Article  CAS  PubMed  Google Scholar 

  15. Kim H, Kim S, Lee HH, Heo H (2016) In-vivo proton magnetic resonance spectroscopy of 2‑Hydroxyglutarate in isocitrate dehydrogenase-mutated gliomas: a technical review for neuroradiologists. Korean J Radiol 17:620. doi:10.3348/kjr.2016.17.5.620

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kirov II, Patil V, Babb JS et al (2009) MR spectroscopy indicates diffuse multiple sclerosis activity during remission. J Neurol Neurosurg Psychiatr 80:1330–1336. doi:10.1136/jnnp.2009.176263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381. doi:10.1002/nbm.891

    Article  CAS  PubMed  Google Scholar 

  18. Kuesel AC, Briere KM, Halliday WC et al (1996) Mobile lipid accumulation in necrotic tissue of high grade astrocytomas. Anticancer Res 16:1485–1489

    CAS  PubMed  Google Scholar 

  19. Küker W, Nägele T, Korfel A et al (2005) Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients. J Neurooncol 72:169–177. doi:10.1007/s11060-004-3390-7

    Article  PubMed  Google Scholar 

  20. Lai PH, Ho JT, Chen WL et al (2002) Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 23:1369–1377

    PubMed  Google Scholar 

  21. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  22. Mohan S, Verma A, Lim CCT et al (2010) Lipid resonance on in vivo proton MR spectroscopy: value of other metabolites in differential diagnosis. Neuroradiol J 23:269–278

    Article  CAS  PubMed  Google Scholar 

  23. Möller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381. doi:10.1007/s00234-001-0760-0

    Article  PubMed  Google Scholar 

  24. Papanagiotou P, Backens M, Grunwald IQ et al (2007) MR spectroscopy in brain tumors. Radiologe 47:520–529. doi:10.1007/s00117-007-1522-8

    Article  CAS  PubMed  Google Scholar 

  25. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  26. Scott JN, Brasher PMA, Sevick RJ et al (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  CAS  PubMed  Google Scholar 

  27. Senft C, Hattingen E, Pilatus U et al (2009) Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: Comparison of maximum and mean choline values. Neurosurgery 65:908–913. doi:10.1227/01.NEU.0000356982.82378.BA

    Article  PubMed  Google Scholar 

  28. Simone IL, Federico F, Tortorella C et al (1998) Localised 1H-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatr 64:516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stadlbauer A, Buchfelder M, Doelken MT et al (2011) Magnetic resonance spectroscopic imaging for visualization of the infiltration zone of glioma. Cent Eur Neurosurg 72:63–69. doi:10.1055/s-0030-1253410

    Article  CAS  PubMed  Google Scholar 

  30. Tedeschi G, Lundbom N, Raman R et al (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524. doi:10.3171/jns.1997.87.4.0516

    Article  CAS  PubMed  Google Scholar 

  31. White ML, Zhang Y, Kirby P, Ryken TC (2005) Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas? AJNR Am J Neuroradiol 26:784–790

    PubMed  Google Scholar 

  32. Zhu H, Barker PB (2011) MR spectroscopy and spectroscopic imaging of the brain. Methods Mol Biol 711:203–226. doi:10.1007/978-1-61737-992-5_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hattingen.

Ethics declarations

Interessenkonflikt

P. Ditter und E. Hattingen geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditter, P., Hattingen, E. MR-Spektroskopie bei Hirntumoren. Radiologe 57, 450–458 (2017). https://doi.org/10.1007/s00117-017-0241-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-017-0241-z

Schlüsselwörter

Keywords

Navigation