Skip to main content

Advertisement

Log in

Hämatoonkologische Bildgebung

Stellenwert der Hybridverfahren

Hemato-oncological imaging

Importance of hybrid procedures

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Bildgebende Verfahren spielen bei hämatoonkologischen Erkrankungen eine wesentliche Rolle für das Staging vor der Therapie und die Beurteilung des Therapieansprechens.

Radiologische Standardverfahren

Ursprünglich waren es v. a. die CT und die Ganzkörper-MRT, welche die für das therapeutische Management relevanten Informationen lieferten.

Methodische Innovationen

Im letzten Jahrzehnt erfolgte bei dieser Gruppe von Tumorerkrankungen jedoch eine Abkehr von den rein morphologischen Verfahren hin zu den Hybridverfahren Positronenemissionstomographie(PET)-CT und PET-MRT, welche auch metabolische und funktionelle Informationen liefern.

Leistungsfähigkeit

Bei Lymphomen steht der PET-Tracer 18F-Fluordesoxyglukose (18F-FDG) mittlerweile im Zentrum der Diagnostik und ist auch fest in der aktuellen Lugano-Klassifikation verankert. Bei multiplen Myelomen ist die Suche nach dem optimalen Tracer, welcher auch Frühformen der Erkrankung erfassen kann, hingegen noch im Gange. Funktionelle MR-Techniken wie die diffusionsgewichtete Bildgebung (DWI), perfusionsgewichtete Sequenzen sowie dynamische kontrastmittelgestützte Sequenzen konnten sowohl bei Lymphomen als auch bei multiplen Myelomen ebenfalls interessante Ergebnisse erzielen.

PET-Bewertung

Eine PET-MR kann diese unterschiedlichen Informationen aufgrund ihres multiparametrischen Ansatzes sinnvoll kombinieren.

Empfehlung für die Praxis

Die PET-MR könnte sich bei hämatoonkologischen Erkrankungen möglicherweise zukünftig als bevorzugtes Hybridverfahren durchsetzen.

Abstract

Clinical/methodical issue

Biomedical imaging procedures play a major role in hemato-oncological diseases with respect to pre-therapeutic staging and assessment of treatment response.

Standard radiological methods

Originally, the therapeutic management was the domain of computed tomography (CT) and whole-body magnetic resonance imaging (MRI).

Methodical innovations

Over the last decade these purely morphological techniques have gradually been replaced by hybrid imaging techniques, such as positron emission tomography-CT (PET/CT) and PET/MRI, which also provide metabolic and functional information.

Performance

For lymphomas, the PET tracer 18F-fluorodeoxyglucose (18 F-FDG) is meanwhile so well-established that its use is a cornerstone of the Lugano classification; however, for multiple myeloma the search for an optimal PET tracer that can also detect early disease stages is still ongoing. Functional MRI techniques, such as diffusion-weighted imaging (DWI), perfusion-weighted imaging and dynamic contrast-enhanced imaging have shown promising results for both lymphomas and multiple myelomas.

Achievements

The PET/MRI technique can combine the different types of information due to its truly multiparametric approach.

Practical recommendations

In the future PET/MRI could possibly become the hybrid imaging technique of choice for hemato-oncological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ak İ, Onner H, Akay OM (2015) Is there any complimentary role of F‑18 NaF PET/CT in detecting of osseous involvement of multiple myeloma? A comparative study for F‑18 FDG PET/CT and F‑18 FDG NaF PET/CT. Ann Hematol 94:1567–1575

    Article  CAS  PubMed  Google Scholar 

  2. Barrington SF, Mikhaeel NG, Kostakoglu L et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol 32:3048–3058

    Article  PubMed  Google Scholar 

  3. Bartel TB, Haessler J, Brown TL (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114:2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhutani M, Turkbey B, Tan E et al (2016) Bone marrow abnormalities and early bone lesions in multiple myeloma and its precursor disease: a prospective study using functional and morphologic imaging. Leuk Lymphoma 7:1–8

    Google Scholar 

  5. Biggi A, Gallamini A, Chauvie S et al (2013) International validation study for interim PET in ABVD-treated, advanced-stage hodgkin lymphoma: interpretation criteria and concordance rate among reviewers. J Nucl Med 54:683–690

    Article  CAS  PubMed  Google Scholar 

  6. Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068

    Article  PubMed  Google Scholar 

  7. Cronin CG, Swords R, Truong MT et al (2010) Clinical utility of PET/CT in lymphoma. AJR Am J Roentgenol 194:W91–103

    Article  PubMed  Google Scholar 

  8. Dupuis J, Berriolo-Riedinger A, Julian A et al (2012) Impact of [(18)F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the Groupe d’Etudes des Lymphomes de l’Adulte and GOELAMS. J Clin Oncol 30:4317–4322

    Article  CAS  PubMed  Google Scholar 

  9. Fenchel M, Konaktchieva M, Weisel K (2010) Response assessment in patients with multiple myeloma during antiangiogenic therapy using arterial spin labeling and diffusion-weighted imaging: a feasibility study. Acad Radiol 17:1326–1333

    Article  PubMed  Google Scholar 

  10. Giles SL, Messiou C, Collins DJ (2014) Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 271:785–794

    Article  PubMed  Google Scholar 

  11. Giraudo C, Raderer M, Karanikas G et al (2016) 18 F-Fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18 F-Fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Invest Radiol 51:163–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goineau A, Colombié M, Rousseau C et al (2015) Incidental detection of a Hodgkin Lymphoma on 18 F-choline PET/CT and comparison with 18 F-FDG in a patient with prostate cancer. Clin Nucl Med 40:670–671

    Article  PubMed  Google Scholar 

  13. Hari PN, Zhang MJ, Roy V et al (2009) Is the international staging system superior to the durie-salmon staging system? A comparison in multiple myeloma patients undergoing autologous transplant. Leukemia 23:1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hillengass J, Ritsch J, Merz M (2016) Increased microcirculation detected by dynamic contrast enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma. Br J Haematol. doi:10.1111/bjh.14038

    Google Scholar 

  15. Ho CL, Chen S, Leung YL et al (2014) 11 C-acetate PET/CT for metabolic characterization of multiple myeloma: a comparative study with 18 F-FDG PET/CT. J Nucl Med 55:749–752

    Article  CAS  PubMed  Google Scholar 

  16. International Myeloma Working Group (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121:749–757

    Article  Google Scholar 

  17. Lapa C, Knop S, Schreder M et al (2016) (11)C-Methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement. Theranostics 6:254–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin C, Ho CL, Ng SH et al (2014) (11)C-acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment. Eur J Nucl Med Mol Imaging 41:41–49

    Article  CAS  PubMed  Google Scholar 

  19. Lückerath K, Lapa C, Albert C et al (2015) 11 C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma. Oncotarget 6:8418–8429

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mayerhoefer ME, Karanikas G, Kletter K et al (2014) Evaluation of diffusion-weighted MRI for pretherapeutic assessment and staging of lymphoma: results of a prospective study in 140 patients. Clin Cancer Res 20:2984–2993

    Article  PubMed  Google Scholar 

  21. Mayerhoefer ME, Karanikas G, Kletter K et al (2015) Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18 F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 21:2506–2513

    Article  CAS  PubMed  Google Scholar 

  22. Merz M, Ritsch J, Kunz C et al (2015) Dynamic contrast-enhanced magnetic resonance imaging for assessment of antiangiogenic treatment effects in multiple myeloma. Clin Cancer Res 21:106–112

    Article  CAS  PubMed  Google Scholar 

  23. Merz M, Moehler TM, Ritsch J et al (2016) Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma: results of a prospective DCE-MRI study. Eur Radiol 26:1404–1411

    Article  PubMed  Google Scholar 

  24. Minamimoto R, Fayad L, Advani R et al (2016) Diffuse large B‑cell lymphoma: prospective multicenter comparison of early interim FLT PET/CT versus FDG PET/CT with IHP, EORTC, Deauville, and PERCIST criteria for early therapeutic monitoring. Radiology. doi:10.1148/radiol.2015150689

    PubMed  Google Scholar 

  25. Nanni C, Zamagni E, Cavo M et al (2007) 11 C-choline vs. 18 F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 5:68

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paes FM, Kalkanis DG, Sideras PA et al (2010) FDG PET/CT of extranodal involvement in non-Hodgkin lymphoma and Hodgkin disease. Radiographics 30:269–291

    Article  PubMed  Google Scholar 

  27. Pregno P, Chiappella A, Bellò et al (2012) Interim 18-FDG-PET/CT failed to predict the outcome in diffuse large B‑cell lymphoma patients treated at the diagnosis with rituximab-CHOP. Blood 119:2066–2073

    Article  CAS  PubMed  Google Scholar 

  28. Sachpekidis C, Goldschmidt H, Hose D et al (2014) PET/CT studies of multiple myeloma using (18) F-FDG and (18) F-NaF: comparison of distribution patterns and tracers’ pharmacokinetics. Eur J Nucl Med Mol Imaging 41:1343–1353

    Article  CAS  PubMed  Google Scholar 

  29. Shinya T, Fujii S, Asakura S et al (2012) Dual-time-point F‑18 FDG PET/CT for evaluation in patients with malignant lymphoma. Ann Nucl Med 26:616–621

    Article  PubMed  Google Scholar 

  30. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood 643569(2016):2016–2001. doi:10.1182/blood-2016-01-643569

    Google Scholar 

  31. Tan E, Weiss BM, Mena E et al (2011) Current and future imaging modalities for multiple myeloma and its precursor states. Leuk Lymphoma 52:1630–1640

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lammeren-Venema D van, Regelink JC, Riphagen II et al (2012) 18 F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: a systematic review. Cancer 118:1971–1981

    Article  PubMed  Google Scholar 

  33. Vij R, Fowler KJ, Shokeen M (2016) New approaches to molecular imaging of multiplemyeloma. J Nucl Med 57:1–4

    Article  PubMed  Google Scholar 

  34. Wester HJ, Keller U, Schottelius M et al (2015) Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 5:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wondergem MJ, Rizvi SN, Jauw Y et al (2015) 18 F-FDG or 3’-deoxy-3’-18 F-fluorothymidine to detect transformation of follicular lymphoma. J Nucl Med 56:216–221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Mayerhoefer.

Ethics declarations

Interessenkonflikt

M.E. Mayerhoefer und A. Haug geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayerhoefer, M., Haug, A. Hämatoonkologische Bildgebung. Radiologe 56, 597–604 (2016). https://doi.org/10.1007/s00117-016-0126-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-016-0126-6

Schlüsselwörter

Keywords

Navigation