Skip to main content
Log in

Diagnostische Genauigkeit der Dual-energy-CT-Angiographie bei Patienten mit Diabetes mellitus

Diagnostic accuracy of dual energy CT angiography in patients with diabetes mellitus

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Zielsetzung

Die periphere arterielle Verschlusskrankheit (PAVK) ist eine wesentliche Komplikation des Diabetes mellitus und stellt aufgrund ausgeprägter Gefäßverkalkungen eine diagnostische Herausforderung dar. Ziel dieser Arbeit war die Ermittlung der diagnostischen Genauigkeit der Dual-energy-CT-Angiographie (DE-CTA) im Vergleich zum Goldstandard, der invasiven digitalen Subtraktionsangiographie (DSA) bei der Stenoseerkennung, da die DE-CTA potenziell eine Differenzierung von Verkalkungen und jodhaltigem Kontrastmittel ermöglicht.

Material und Methoden

Dreißig Patienten mit dem Verdacht auf das Vorliegen oder bekannter PAVK und zusätzlich bestehendem Diabetes mellitus wurden retrospektiv in die Studie eingeschlossen. Bei allen Teilnehmern wurde eine DE-CTA (Somatom Definition Flash, Siemens Healthcare, Germany), gefolgt von einer invasiven Angiographie durchgeführt. Das Vorhandensein von Stenosen in gekrümmten multiplanaren Reformationen (MPR) und Projektionen maximaler Intensität (MIP) wurde verblindet evaluiert. Die diagnostische Genauigkeit wurde mit der Angiographie als Goldstandard errechnet.

Ergebnisse

Bei den 30 in die Analyse eingeschlossenen diabetischen Patienten (83 % männlich, 70,0 ± 10,5 Jahre alt, 83 % Diabetes mellitus Typ 2) war die Prävalenz behandlungsbedürftiger Stenosen in 331 evaluierten Gefäßsegmenten hoch (30 %). Die DE-CTA detektierte kritische Stenosen mit einer hohen Sensitivität und guten Spezifität anhand gekrümmter MPR (100 und 93,1 %) und MIP (99 und 91,8 %). In einer Subanalyse war die diagnostische Genauigkeit am höchsten für Stenosen im Bereich der Beckenstrombahn (gekrümmte MPR 97,1 % vs. MIP 100 %) und im Oberschenkelbereich (99,2 vs. 96,6 %) verglichen mit dem Unterschenkelkompartiment (90,9 vs. 88 %).

Schlussfolgerungen

Die DE-CTA weist eine hohe diagnostische Genauigkeit bei der Stenosenerkennung und -charakterisierung im Rahmen der PAVK bei Patienten mit Diabetes mellitus auf, hat jedoch eine eingeschränkte Genauigkeit im Bereich des Unterschenkelkompartiments.

Abstract

Objectives

Peripheral arterial disease (PAD) represents a major and highly prevalent complication in patients with diabetes mellitus. The diagnostic, non-invasive work-up by computed tomography angiography (CTA) is limited in the presence of extensive calcification. The aim of the study was to determine the diagnostic accuracy of dual energy CTA (DE-CTA) for the detection and characterization of PAD in patients with diabetes mellitus.

Material and methods

In this study 30 diabetic patients with suspected or known PAD were retrospectively included in the analysis. All subjects underwent DE-CTA (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany) prior to invasive angiography, which served as the reference standard. Blinded analysis included assessment of the presence and degree of peripheral stenosis on curved multiplanar reformatting (MPR) and maximum intensity projections (MIP). Conventional measures of diagnostic accuracy were derived.

Results

Among the 30 subjects included in the analysis (83 % male, mean age 70.0 ± 10.5 years, 83 % diabetes type 2), the prevalence of critical stenosis in 331 evaluated vessel segments was high (30 %). Dual energy CT identified critical stenoses with a high sensitivity and good specificity using curved MPR (100 % and 93.1 %, respectively) and MIP images (99 % and 91.8 %, respectively). In stratified analysis, the diagnostic accuracy was higher for stenosis pertaining to the pelvic and thigh vessels as compared with the lower extremities (curved MPR accuracy 97.1 % vs. 99.2 vs. 90.9 %; respectively, p < 0.001).

Conclusion

The use of DE-CTA allows reliable detection and characterization of peripheral arterial stenosis in patients with diabetes mellitus with higher accuracy in vessels in the pelvic and thigh regions compared with the vessels in the lower legs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Wild S et al (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  2. Unwin N, Gan D, Whiting D (2010) The IDF diabetes atlas: providing evidence, raising awareness and promoting action. Diabetes Res Clin Pract 87(1):2–3

    Article  PubMed  Google Scholar 

  3. o A (2013) International diabetes federation, 6. Aufl. IDF, IDF diabetes atlas, Brussels

  4. Faglia E (2011) Characteristics of peripheral arterial disease and its relevance to the diabetic population. Int J Low Extrem Wounds 10(3):152–166

    Article  PubMed  Google Scholar 

  5. Alva ML et al (2014) The impact of diabetes-related complications on healthcare costs: new results from the UKPDS (UKPDS 84). Diabet Med, in press

  6. McDermott MM et al (2001) Prevalence and significance of unrecognized lower extremity peripheral arterial disease in general medicine practice*. J Gen Intern Med 16(6):384–390

    Article  CAS  PubMed  Google Scholar 

  7. Vosshenrich R, Reimer P, Landwehr P (2007) Peripheral arteries. Radiologe 47(6):545–555 (quiz 556–557)

    Article  CAS  PubMed  Google Scholar 

  8. Collins R et al (2007) A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol Assess 11(20):iii–iv, xi–xiii, 1–184

    Google Scholar 

  9. Jens S et al (2013) Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol 23(11):3104–3114

    Article  PubMed  Google Scholar 

  10. Heijenbrok-Kal MH, Kock MC, Hunink MG (2007) Lower extremity arterial disease: multidetector CT angiography meta-analysis. Radiology 245(2):433–439

    Article  PubMed  Google Scholar 

  11. Met R et al (2009) Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 301(4):415–424

    Article  CAS  PubMed  Google Scholar 

  12. Moos SI et al (2013) Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: a meta-analysis. Eur J Radiol 82(9):e387–e399

    Article  PubMed  Google Scholar 

  13. Erley C (2007) Iodinated contrast agent-induced nephropathy. Radiologe 47(9):761–767

    Article  CAS  PubMed  Google Scholar 

  14. Meyer BC et al (2008) Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol 68(3):414–422

    Article  CAS  PubMed  Google Scholar 

  15. Sommer WH et al (2009) The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol 44(5):285–292

    Article  PubMed  Google Scholar 

  16. Schabel C et al (2014) Assessment of the hepatic veins in poor contrast conditions using dual energy CT: evaluation of a novel monoenergetic extrapolation software algorithm. Rofo 186(6):591–597

    Article  CAS  PubMed  Google Scholar 

  17. Bongers MN et al (2014) Noise-optimized virtual monoenergetic images and iodine maps for the detection of venous thrombosis in second-generation dual-energy CT (DECT): an ex vivo phantom study. Eur Radiol, in press

  18. Kau T et al (2011) Dual-energy CT angiography in peripheral arterial occlusive disease-accuracy of maximum intensity projections in clinical routine and subgroup analysis. Eur Radiol 21(8):1677–1686

    Article  PubMed  Google Scholar 

  19. Brockmann C et al (2009) Dual-energy CT angiography in peripheral arterial occlusive disease. Cardiovasc Intervent Radiol 32(4):630–637

    Article  PubMed  Google Scholar 

  20. Buecker A et al (2010) Percutaneous mechanical atherectomy for treatment of peripheral arterial occlusive disease. Radiologe 50(1):29–37

    Article  CAS  PubMed  Google Scholar 

  21. Vries M de et al (2006) Peripheral arterial disease: clinical and cost comparisons between duplex US and contrast-enhanced MR angiography – a multicenter randomized trial. Radiology 240(2):401–410

    Article  PubMed  Google Scholar 

  22. Ouwendijk R et al (2008) Multicenter randomized controlled trial of the costs and effects of noninvasive diagnostic imaging in patients with peripheral arterial disease: the DIPAD trial. AJR Am J Roentgenol 190(5):1349–1357

    Article  PubMed  Google Scholar 

  23. Ouwendijk R et al (2005) Imaging peripheral arterial disease: a randomized controlled trial comparing contrast-enhanced MR angiography and multi-detector row CT angiography. Radiology 236(3):1094–1103

    Article  PubMed  Google Scholar 

  24. Davenport MS et al (2014) The challenges in assessing contrast-induced nephropathy: where are we now? AJR Am J Roentgenol 202(4):784–789

    Article  PubMed  Google Scholar 

  25. Ellis JH, Cohan RH (2009) Reducing the risk of contrast-induced nephropathy: a perspective on the controversies. AJR Am J Roentgenol 192(6):1544–1549

    Article  PubMed  Google Scholar 

  26. Lee J et al (2014) Contrast-induced nephropathy in patients undergoing intravenous contrast-enhanced computed tomography in Korea: a multi-institutional study in 101487 patients. Korean J Radiol 15(4):456–463

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bogot NR et al (2011) Image quality of low-energy pulmonary CT angiography: comparison with standard CT. AJR Am J Roentgenol 197(2):W273–W278

    Article  PubMed  Google Scholar 

  28. LaBounty TM et al (2011) Coronary CT angiography of patients with a normal body mass index using 80 kVp versus 100 kVp: a prospective, multicenter, multivendor randomized trial. AJR Am J Roentgenol 197(5):W860–W867

    Article  PubMed  Google Scholar 

  29. Oda S et al (2011) A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses. Acad Radiol 18(8):991–999

    Article  PubMed  Google Scholar 

  30. Cao JX et al (2014) Radiation and contrast agent doses reductions by using 80-kV tube voltage in coronary computed tomographic angiography: a comparative study. Eur J Radiol 83(2):309–314

    Article  PubMed  Google Scholar 

  31. Meyer M et al (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273(2):373–382

    Article  PubMed  Google Scholar 

  32. Meinel FG et al (2014) Image quality and radiation dose of low tube voltage 3rd generation dual-source coronary CT angiography in obese patients: a phantom study. Eur Radiol 24(7):1643–1650

    Article  PubMed  Google Scholar 

  33. Sommer WH et al (2010) Diagnostic value of time-resolved CT angiography for the lower leg. Eur Radiol 20(12):2876–2881

    Article  PubMed  Google Scholar 

  34. Johnson TR et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  35. Thomas C et al (2010) Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration. Invest Radiol 45(7):393–398

    PubMed  Google Scholar 

  36. He C et al (2014) Comparison of lower extremity atherosclerosis in diabetic and non-diabetic patients using multidetector computed tomography. BMC Cardiovasc Disord 14:125

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Schabel weist auf folgende Beziehung hin: Speaker Siemens Health Care. M.N. Bongers, D. Ketelsen. R. Syha, C. Thomas, G. Homann, M. Notohamiprodjo, K. Nikolaou, F. Bamberg geben an, dass kein Interessenkonflikt besteht. Alle angewandten Verfahren stehen im Einklang mit den ethischen Normen der verantwortlichen Kommission für Forschung am Menschen (institutionell und national) und mit der Deklaration von Helsinki von 1975 in der revidierten Fassung von 2008. Alle Patienten wurden erst nach erfolgter Aufklärung und Einwilligung in die Studie eingeschlossen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schabel M.D..

Additional information

Dieser Beitrag ist als eine Originalarbeit anzusehen und aus formalen Gründen im Leitthema dieser Ausgabe eingeordnet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schabel, C., Bongers, M., Ketelsen, D. et al. Diagnostische Genauigkeit der Dual-energy-CT-Angiographie bei Patienten mit Diabetes mellitus. Radiologe 55, 314–322 (2015). https://doi.org/10.1007/s00117-014-2721-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-014-2721-8

Schlüsselwörter

Keywords

Navigation