Skip to main content
Log in

Prostatakarzinom

Prostate cancer

  • CME Zertifizierte Fortbildung
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Für viele klinische Fragestellungen zum Prostatakarzinom wird die Magnetresonanztomographie (MRT) der Prostata immer wichtiger. Die hohe morphologische Auflösung von T2w-Sequenzen ist im Vergleich zu anderen Bildgebungsmodalitäten unübertroffen und ermöglicht neben Detektion und Lokalisation des Prostatakarzinoms auch die Beurteilung eines kapselüberschreitenden Wachstums. Die funktionellen MRT-Methoden wie DWI, DCE-MRI und 1H-MRS erhöhen insbesondere die Spezifität und in geringerem Maße auch die Sensitivität der Diagnostik. Gemäß der interdisziplinären S3-Leitlinie wird die MRT der Prostata bei Patienten mit mindestens einmaliger negativer Biopsie zur Detektion des Karzinoms empfohlen. Demnach sollten karzinomsuspekte Areale zusätzlich zur systematischen Biopsie auch gezielt biopsiert werden. Für die Befundübermittlung der suspekten Areale hat sich das Vorgehen entsprechend der PI-RADS-Klassifikation bewährt. Lokalisation und Staging des Prostatakarzinoms gelingen bildgebend mit Hilfe der MRT am genauesten und werden in der S3-Leitlinie insbesondere für Tumoren im klinischen Stadium cT3/4 oder einem Gleason-Score von  8 oder mehr empfohlen. Zusätzlich zu den erwähnten Anwendungen wird die MRT momentan hauptsächlich unter Studienbedingungen ebenfalls für die Rezidivdiagnostik und die aktive Überwachung eingesetzt.

Abstract

For many clinical issues regarding prostate cancer magnetic resonance imaging (MRI) is gaining increasing importance for prostate diagnostics. The high morphological resolution of T2-weighted sequences is unsurpassed compared to other imaging modalities. It enables not only the detection and localization of prostate cancer but also allows the evaluation of extracapsular extensions. Functional MRI methods, such as diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI and proton magnetic resonance spectroscopy (1H-MRS) increase the specificity and to a lesser extent, the sensitivity of diagnostics. In accordance with the interdisciplinary S3 guidelines, prostate MRI is recommended for patients with at least one negative biopsy for cancer detection. According to the guidelines areas suspected of being cancerous should be selectively biopsied in addition to the systematic biopsy. The transmission of findings about the suspected tumor areas according to the structured PI-RADS classification system has proven its worth. The localization and staging of prostate carcinoma is best achieved with the help of MRI and is recommended in the S3 guidelines especially for tumors with a clinical stage cT3/4 or with a Gleason grading system score ≥8. In addition to these applications MRI is mainly used under study conditions for local recurrence or active surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Grimm MO, Belka C, Beyer J, Bamberg M (2013) Prostatakarzinom. Onkologe 19:702–704

    Article  Google Scholar 

  2. Reichelt U, Erbersdobler A (2013) Epidemiologie, Pathologie und Molekularbiologie des Prostatakarzinoms. Onkologe 19:711–718

    Article  Google Scholar 

  3. Deutsche Gesellschaft für Urologie e. V. (2011) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. Version 2.0

  4. D’Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  Google Scholar 

  5. Partin AW, Mangold LA, Lamm DM et al (2001) Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 58:843–848

    Article  CAS  PubMed  Google Scholar 

  6. Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF), der Deutschen Krebsgesellschaft e. V. (DKG) und der Deutschen Krebshilfe e. V. (DKH) (Hrsg) (2011) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. AWMF-Register-Nummer 043-022OL, Version 2.0-1, Aktualisierung 2011

  7. Grimm MO, Hartmann F, Horstmann M (2013) Operative Therapie des lokal begrenzten Prostatakarzinoms. Onkologe 2013:719–727

    Article  Google Scholar 

  8. Hegemann NS, Li M, Ganswindt U, Belka C (2013) Strahlentherapie des Prostatakarzinoms. Onkologe 19:737–746

    Article  Google Scholar 

  9. Li L, Wang L, Feng Z et al (2013) Prostate cancer magnetic resonance imaging (MRI): multidisciplinary standpoint. Quant Imaging Med Surg 3:100–112

    PubMed Central  PubMed  Google Scholar 

  10. Franiel T (2011) Multiparametric magnetic resonance imaging of the prostate – technique and clinical applications. Rofo 183:607–617

    Article  CAS  PubMed  Google Scholar 

  11. Wagner M, Rief M, Busch J et al (2010) Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 65:460–464

    Article  CAS  PubMed  Google Scholar 

  12. Roethke M, Blondin D, Schlemmer HP, Franiel T (2013) PI-RADS classification: structured reporting for MRI of the prostate. Rofo 185:253–261

    Article  Google Scholar 

  13. Akin O, Sala E, Moskowitz CS et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239:784–792

    Article  PubMed  Google Scholar 

  14. Janus C, Lippert M (1992) Benign prostatic hyperplasia: appearance on magnetic resonance imaging. Urology 40:539–541

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Mazaheri Y, Zhang J et al (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246:168–176

    Article  PubMed  Google Scholar 

  16. Vargas HA, Akin O, Franiel T et al (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259:775–784

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sato C, Naganawa S, Nakamura T et al (2005) Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 21:258–262

    Article  PubMed  Google Scholar 

  18. Jager GJ, Ruijter ET, Kaa CA van de et al (1997) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203:645–652

    CAS  PubMed  Google Scholar 

  19. Engelbrecht MR, Huisman HJ, Laheij RJ et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254

    Article  PubMed  Google Scholar 

  20. Shukla-Dave A, Hricak H, Ishill NM et al (2009) Correlation of MR imaging and MR spectroscopic imaging findings with Ki-67, phospho-Akt, and androgen receptor expression in prostate cancer. Radiology 250:803–812

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mueller-Lisse UG, Swanson MG, Vigneron DB, Kurhanewicz J (2007) Magnetic resonance spectroscopy in patients with locally confined prostate cancer: association of prostatic citrate and metabolic atrophy with time on hormone deprivation therapy, PSA level, and biopsy Gleason score. Eur Radiol 17:371–378

    Article  PubMed  Google Scholar 

  22. Kurhanewicz J, Vigneron DB, Hricak H et al (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198:795–805

    CAS  PubMed  Google Scholar 

  23. Scheenen TW, Gambarota G, Weiland E et al (2005) Optimal timing for in vivo 1H-MR spectroscopic imaging of the human prostate at 3 T. Magn Reson Med 53:1268–1274

    Article  CAS  PubMed  Google Scholar 

  24. Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

    Article  PubMed Central  PubMed  Google Scholar 

  25. Franiel T, Vargas AH, Mazaheri Y et al (2013) Role of endorectal prostate MRI in patients with initial suspicion of prostate cancer. Rofo 184:967–974

    Article  CAS  PubMed  Google Scholar 

  26. Mkinen T, Auvinen A, Hakama M et al (2002) Acceptability and complications of prostate biopsy in population-based PSA screening versus routine clinical practice: a prospective, controlled study. Urology 60:846–850

    Article  PubMed  Google Scholar 

  27. Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626

    Article  PubMed  Google Scholar 

  28. Mazaheri Y, Shukla-Dave A, Muellner A, Hricak H (2011) MRI of the prostate: clinical relevance and emerging applications. J Magn Reson Imaging 33:258–274

    Article  PubMed  Google Scholar 

  29. Franiel T, Ludemann L, Taupitz M et al (2009) Pharmacokinetic MRI of the prostate: parameters for differentiating low-grade and high-grade prostate cancer. Rofo 181:536–542

    Article  CAS  PubMed  Google Scholar 

  30. Portalez D, Rollin G, Leandri P et al (2010) Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies. Eur Radiol 20:2781–2790

    Article  PubMed  Google Scholar 

  31. Kim CK, Park BK, Kim B (2010) High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol 194:W33–W37

    Article  PubMed  Google Scholar 

  32. Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174

    Article  PubMed  Google Scholar 

  33. Roethke MC, Lichy MP, Jurgschat L et al (2011) Tumorsize dependent detection rate of endorectal MRI of prostate cancer – a histopathologic correlation with whole-mount sections in 70 patients with prostate cancer. Eur J Radiol 79:189–195

    Article  PubMed  Google Scholar 

  34. Roehl KA, Antenor JA, Catalona WJ (2002) Serial biopsy results in prostate cancer screening study. J Urol 167:2435–2439

    Article  PubMed  Google Scholar 

  35. Prando A, Kurhanewicz J, Borges AP et al (2005) Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology 236:903–910

    Article  PubMed  Google Scholar 

  36. Sciarra A, Panebianco V, Ciccariello M et al (2010) Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res 16:1875–1883

    Article  CAS  PubMed  Google Scholar 

  37. Franiel T, Stephan C, Erbersdobler A et al (2011) Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding – multiparametric MR imaging for detection and biopsy planning. Radiology 259:162–172

    Article  PubMed  Google Scholar 

  38. Durmus T, Reichelt U, Huppertz A et al (2013) MRI-guided biopsy of the prostate: correlation between the cancer detection rate and the number of previous negative TRUS biopsies. Diagn Interv Radiol 19:411–417

    PubMed  Google Scholar 

  39. Sonn GA, Chang E, Natarajan S et al (2013) Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol [Epub ahead of print]

  40. Franiel T, Fritzsche F, Staack A et al (2006) Histopathologic quality of prostate core biopsy specimens: comparison of an MR-compatible biopsy needle and a ferromagnetic biopsy needle used for ultrasound-guided prostate biopsy. Rofo 178:1212–1218

    Article  CAS  PubMed  Google Scholar 

  41. Kurhanewicz J, Vigneron D, Carroll P, Coakley F (2008) Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol 18:71–77

    Article  PubMed Central  PubMed  Google Scholar 

  42. Roethke M, Anastasiadis AG, Lichy M et al (2012) MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy. World J Urol 30:213–218

    Article  CAS  PubMed  Google Scholar 

  43. Schilling D, Kurosch M, Mager R et al (2013) Fusion imaging in urology: combination of MRI and TRUS for detection of prostate cancer. Urologe A 52:481–489

    Article  CAS  PubMed  Google Scholar 

  44. Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458

    Article  PubMed  Google Scholar 

  45. Lim HK, Kim JK, Kim KA, Cho KS (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection – a multireader study. Radiology 250:145–151

    Article  PubMed  Google Scholar 

  46. Kim CK, Park BK, Kim B (2006) Localization of prostate cancer using 3 T MRI – comparison of T2-weighted and dynamic contrast-enhanced imaging. J Comput Assist Tomogr 30:7–11

    Article  PubMed  Google Scholar 

  47. Heuck A, Scheidler J, Sommer B et al (2003) MR imaging of prostate cancer. Radiologe 43:464–473

    Article  CAS  PubMed  Google Scholar 

  48. Hricak H, Wang L, Wei DC et al (2004) The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 100:2655–2663

    Article  PubMed  Google Scholar 

  49. Zhang J, Hricak H, Shukla-Dave A et al (2009) Clinical stage T1c prostate cancer: evaluation with endorectal MR imaging and MR spectroscopic imaging. Radiology 253:425–434

    Article  PubMed Central  PubMed  Google Scholar 

  50. Yu KK, Scheidler J, Hricak H et al (1999) Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology 213:481–488

    Article  CAS  PubMed  Google Scholar 

  51. Futterer JJ (2012) Imaging of recurrent prostate cancer. Radiol Clin North Am 50:1075–1083

    Article  PubMed  Google Scholar 

  52. Casciani E, Polettini E, Carmenini E et al (2008) Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. AJR Am J Roentgenol 190:1187–1192

    Article  PubMed  Google Scholar 

  53. Vargas HA, Wassberg C, Akin O, Hricak H (2012) MR imaging of treated prostate cancer. Radiology 262:26–42

    Article  PubMed  Google Scholar 

  54. Sella T, Schwartz LH, Hricak H (2006) Retained seminal vesicles after radical prostatectomy: frequency, MRI characteristics, and clinical relevance. AJR Am J Roentgenol 186:539–546

    Article  PubMed  Google Scholar 

  55. Rouviere O, Vitry T, Lyonnet D (2010) Imaging of prostate cancer local recurrences: why and how? Eur Radiol 20:1254–1266

    Article  PubMed  Google Scholar 

  56. Cirillo S, Petracchini M, Scotti L et al (2009) Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol 19:761–769

    Article  PubMed  Google Scholar 

  57. Roy C, Foudi F, Charton J et al (2013) Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy. AJR Am J Roentgenol 200:W361–W368

    Article  PubMed  Google Scholar 

  58. Sciarra A, Panebianco V, Salciccia S et al (2008) Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol 54:589–600

    Article  PubMed  Google Scholar 

  59. Haider MA, Chung P, Sweet J et al (2008) Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys 70:425–430

    Article  PubMed  Google Scholar 

  60. Rouviere O, Valette O, Grivolat S et al (2004) Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor – correlation with biopsy findings. Urology 63:922–927

    Article  PubMed  Google Scholar 

  61. Kim CK, Park BK, Park W, Kim SS (2010) Prostate MR imaging at 3 T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imaging 35:246–252

    Article  PubMed  Google Scholar 

  62. Pucar D, Shukla-Dave A, Hricak H et al (2005) Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy – initial experience. Radiology 236:545–553

    Article  PubMed Central  PubMed  Google Scholar 

  63. Pucar D, Hricak H, Shukla-Dave A et al (2007) Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 69:62–69

    Article  PubMed  Google Scholar 

  64. Kim CK, Park BK, Lee HM (2009) Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3 T diffusion-weighted MRI. J Magn Reson Imaging 29:391–397

    Article  PubMed  Google Scholar 

  65. Westphalen AC, Coakley FV, Roach M 3rd et al (2010) Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. Radiology 256:485–492

    Article  PubMed Central  PubMed  Google Scholar 

  66. Schroder FH, Hugosson J, Roobol MJ et al (2012) Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 366:981–990

    Article  PubMed  Google Scholar 

  67. Zakian KL, Sircar K, Hricak H et al (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234:804–814

    Article  PubMed  Google Scholar 

  68. Vargas HA, Akin O, Shukla-Dave A et al (2012) Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology 265:478–487

    Article  PubMed Central  PubMed  Google Scholar 

  69. Vargas HA, Akin O, Afaq A et al (2012) Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J Urol 188:1732–1738

    Article  PubMed  Google Scholar 

  70. Haffner J, Lemaitre L, Puech P et al (2011) Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 108:E171–E178

    Article  PubMed  Google Scholar 

  71. Fradet V, Kurhanewicz J, Cowan JE et al (2010) Prostate cancer managed with active surveillance: role of anatomic MR imaging and MR spectroscopic imaging. Radiology 256:176–183

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Franiel, N. Eckardt, M. Waginger und M. Horstmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Franiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franiel, T., Eckardt, N., Waginger, M. et al. Prostatakarzinom. Radiologe 54, 491–508 (2014). https://doi.org/10.1007/s00117-013-2608-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-013-2608-0

Schlüsselwörter

Keywords

Navigation