Skip to main content
Log in

Funktionelle MRT der Niere zur Erfassung strahleninduzierter Nierenschädigungen

Functional magnetic resonance imaging for evaluation of radiation-induced renal damage

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Diagnostik strahleninduzierter, insbesondere chronischer Schädigungen der Niere ist nach wie vor schwierig und beruht primär auf der klinischen Beurteilung. Durch die zunehmende Anzahl von Langzeitüberlebenden nach einer Strahlentherapie wird die Bedeutung dieser Diagnostik jedoch weiter zunehmen. In diesem Beitrag wird der Frage nachgegangen, in wieweit hierzu die MRT-Bildgebung und hier besonders die funktionellen Bildgebungsmodalitäten ihren Beitrag leisten können. Die folgenden Verfahren werden kurz vorgestellt und bewertet: die Blood-oxygenation-level-dependent-Bildgebung (BOLD), die diffusionsgewichtete Bildgebung („diffusion-weighted imaging“, DWI) bzw. das „diffusion tensor imaging“ (DTI), die MR-Perfusionsmessungen, und die 23Na-Bildgebung. Insgesamt lässt sich feststellen, dass aktuell lediglich die DWI und die kontrastmittelverstärkte MR-Perfusion für einen weitverbreiteten klinischen Einsatz geeignet erscheinen. Allerdings fehlen auch für diese beiden Techniken valide Daten aus größeren Studien, um ihre Wertigkeit für die Beurteilung strahleninduzierter Nierenschäden abzuschätzen. Techniken wie die BOLD- oder 23Na-Bildgebung haben ein großes Potenzial, sind aktuell jedoch weder hinsichtlich der Fragestellung ausreichend evaluiert noch technisch einfach und zuverlässig zu implementieren.

Abstract

The diagnosis of radiation-induced (especially chronic) renal alterations/damage is difficult and currently relies primarily on clinical evaluation. The importance of renal diagnostic evaluation will increase continuously due to the increasing number of long-term survivors after radiotherapy. This article evaluates the potentia diagnostic contribution of magnetic resonance (MR) imaging with a focus on functional MRI. The following functional MRI approaches are briefly presented and evaluated: blood oxygenation level-dependent imaging (BOLD), diffusion-weighted imaging (DWI) or diffusion tensor imaging (DTI), MR perfusion measurements and 23Na imaging. In summary, only DWI and contrast-enhanced MR perfusion currently seem to be suitable approaches for a broader, clinical implementation. However, up to now valid data from larger patient studies are lacking for both techniques in regard to radiation-induced renal alterations. The BOLD and 23Na imaging procedures have a huge potential but are currently neither sufficiently evaluated with regard to radiation-induced renal alterations nor technically simple and reliable for implementation into the clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Attenberger UI, Sourbron SP, Schoenberg SO et al (2010) Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133

    Article  PubMed  Google Scholar 

  2. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  PubMed  CAS  Google Scholar 

  3. Bolling T, Kreuziger DC, Ernst I et al (2011) Retrospective, monocentric analysis of late effects after total body irradiation (TBI) in adults. Strahlenther Onkol 187:311–315

    Article  PubMed  Google Scholar 

  4. Chan JH, Tsui EY, Luk SH et al (2001) MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Clin Imaging 25:110–113

    Article  PubMed  CAS  Google Scholar 

  5. Djamali A, Sadowski EA, Muehrer RJ et al (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 292:F513–522

    Article  PubMed  CAS  Google Scholar 

  6. Djamali A, Sadowski EA, Samaniego-Picota M et al (2006) Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation 82:621–628

    Article  PubMed  Google Scholar 

  7. Epstein FH, Veves A, Prasad PV (2002) Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25:575–578

    Article  PubMed  Google Scholar 

  8. Haneder S, Konstandin S, Morelli JN et al (2011) Quantitative and qualitative 23Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260:857–865

    Article  PubMed  Google Scholar 

  9. Haneder S, Michaely HJ, Schoenberg SO et al (2011) Assessment of conformal radiotherapy and intensity modulated radiotherapy induced renal damage by means of functional 1H-MR-imaging and 23Na-MR-imaging. Int J Radiat Oncol Biol Phys 81:326–327

    Google Scholar 

  10. Jansen EP, Saunders MP, Boot H et al (2007) Prospective study on late renal toxicity following postoperative chemoradiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 67:781–785

    Article  PubMed  CAS  Google Scholar 

  11. Kal HB, Van Kempen-Harteveld ML (2006) Renal dysfunction after total body irradiation: dose-effect relationship. Int J Radiat Oncol Biol Phys 65:1228–1232

    Article  PubMed  Google Scholar 

  12. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301

    Article  PubMed  CAS  Google Scholar 

  13. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Google Scholar 

  14. Lee VS, Rusinek H, Johnson G et al (2001) MR renography with low-dose gadopentetate dimeglumine: feasibility. Radiology 221:371–379

    Article  PubMed  CAS  Google Scholar 

  15. Li LP, Halter S, Prasad PV (2008) Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin North Am 16:613–625, viii

    Article  Google Scholar 

  16. Li LP, Vu AT, Li BS et al (2004) Evaluation of intrarenal oxygenation by BOLD MRI at 3.0 T. J Magn Reson Imaging 20:901–904

    Article  PubMed  Google Scholar 

  17. Maril N, Margalit R, Mispelter J et al (2005) Sodium magnetic resonance imaging of diuresis: spatial and kinetic response. Magn Reson Med 53:545–552

    Article  PubMed  CAS  Google Scholar 

  18. Maril N, Rosen Y, Reynolds GH et al (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56:1229–1234

    Article  PubMed  CAS  Google Scholar 

  19. Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(Suppl 1):52–64

    Article  Google Scholar 

  20. Michaely HJ, Metzger LM, Haneder S et al (2011) Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int (in press)

  21. Michaely HJ, Schoenberg SO, Ittrich C et al (2004) Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol 39:698–705

    Article  PubMed  Google Scholar 

  22. Michaely HJ, Schoenberg SO, Oesingmann N et al (2006) Renal artery stenosis: functional assessment with dynamic MR perfusion measurements – feasibility study. Radiology 238:586–596

    Article  PubMed  Google Scholar 

  23. Michaely HJ, Sourbron SP, Buettner C et al (2008) Temporal constraints in renal perfusion imaging with a 2-compartment model. Invest Radiol 43:120–128

    Article  PubMed  Google Scholar 

  24. Notohamiprodjo M, Glaser C, Herrmann KA et al (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 43:677–685

    Article  PubMed  Google Scholar 

  25. Notohamiprodjo M, Sourbron S, Staehler M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31:490–501

    Article  PubMed  Google Scholar 

  26. Sadowski EA, Fain SB, Alford SK et al (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent mr imaging: initial experience. Radiology 236:911–919

    Article  PubMed  Google Scholar 

  27. Sauer R (2009) Niere. In: Sauer R (Hrsg) Strahlentherapie und Onkologie. Urban & Fischer Elsevier, München, S 170–171

  28. Sourbron SP, Michaely HJ, Reiser MF et al (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43:40–48

    Article  PubMed  Google Scholar 

  29. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  30. Togao O, Doi S, Kuro-O M et al (2010) Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255:772–780

    Article  PubMed  Google Scholar 

  31. Vandecaveye V, De Keyzer F, Dirix P et al (2010) Applications of diffusion-weighted magnetic resonance imaging in head and neck squamous cell carcinoma. Neuroradiology 52:773–784

    Article  PubMed  Google Scholar 

  32. Xu X, Fang W, Ling H et al (2010) Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study. Eur Radiol 20:978–983

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Beratertätigkeit bei Bayer Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.J. Michaely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haneder, S., Boda-Heggemann, J., Schoenberg, S. et al. Funktionelle MRT der Niere zur Erfassung strahleninduzierter Nierenschädigungen. Radiologe 52, 243–251 (2012). https://doi.org/10.1007/s00117-011-2195-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-011-2195-x

Schüsselwörter

Keyword

Navigation