Skip to main content
Log in

Positronenemissionstomographie in den Neurowissenschaften

Ein integrativer Bestandteil der klinischen Diagnostik und experimentellen Forschung

Positron emission tomography in neuroscience

An integrative part of clinical diagnostic methods and experimental research

  • Freies Thema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Bedeutung der molekularen bildgebenden Techniken zum besseren Verständnis der pathophysiologischen Krankheitszustände steigt. Heutzutage kann die Positronenemissionstomographie (PET) als die Methode der Wahl zum nichtinvasiven Studium der biochemischen und molekularen Prozesse in Mensch und Tier in vivo bezeichnet werden. Aufgrund der rasanten Entwicklung in der Radiochemie und der Tracer-Technologie können verschiedenste endogen exprimierte und exogen eingeführte Gene mittels PET dargestellt werden. Diese Möglichkeiten öffnen das Fenster zum bedeutenden und rasch wachsenden Feld der molekularen Bildgebung, die auf die visuelle Lokalisation biologisch interessanter Prozesse in normalen und pathologischen Zellen in Tiermodellen und beim Menschen hinzielen. Neben der Bedeutung für die Grundlagenforschung ist PET den konventionellen diagnostischen Methoden in mehreren klinischen Indikationen deutlich überlegen. Dies wird illustriert durch die Visualisierung von biologischen und anatomischen Veränderungen, die nicht mittels Computertomographie oder Magnetresonanzstudien dargestellt werden können, bevor erste Symptome auftreten. Die vorliegende Übersichtsarbeit fasst den klinischen Gebrauch der PET im Gebiet der Neurowissenschaften zusammen und versucht die Untersuchung des pathophysiologischen Hintergrunds einer Anzahl an Krankheiten zu beleuchten und—aufgrund der mittels molekularen Bildgebung gewonnenen Erkennntnisse—neue Strategien in der Behandlung dieser Patienten aufzuzeigen.

Abstract

The role of molecular neuroimaging techniques is increasing in the understanding of pathophysiological mechanism of diseases. To date, positron emission tomography is the most powerful tool for the non-invasive study of biochemical and molecular processes in humans and animals in vivo. With the development in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analyzed by PET. This opens up the exciting and rapidly field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. Besides its usefulness for basic research positron emission tomography has been proven to be superior to conventional diagnostic methods in several clinical indications. This is illustrated by detection of biological or anatomic changes that cannot be demonstrated by computed tomography or magnetic resonance imaging, as well as even before symptoms are expressed. The present review summarizes the clinical use of positron emission tomography in neuroscience that has helped elucidate the pathophysiology of a number of diseases and has suggested strategies in the treatment of these patients. Special reference is given to the neurovascular, neurodegenerative and neurooncological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Krause T (2002) Nuklearmedizin: PET—eine bezahlbare Innovation? Schweiz Med Forum 2:1233–1235

    Google Scholar 

  2. Davis MR, Votaw JR, Bremner JD et al. (2003) Initial Human PET Imaging studies with the dopamine transporter ligand 18F-FECNT. J Nucl Med 44:855–861

    Google Scholar 

  3. Heiss WD, Pawlik G, Herholz K et al. (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4:212–223

    Google Scholar 

  4. Heiss WD, Podreka I (1993) Role of PET and SPECT in the assessment of ischemic cerebrovascular disease. Cerebrovasc Brain Metab Rev 5:235–263

    Google Scholar 

  5. Fazekas F, Payer F (2002) F-18-Fluorodeoxy-Glucose-Positroenemissionstomogrpahie in der Neurologie. Wien Med Wochenschr 152:293–297

    Google Scholar 

  6. Roelcke U, Leenders KL (2001) PET in neuro-oncology. J Cancer Res Clin Oncol 127:2–8

    Google Scholar 

  7. Schaller B, Graf R, Sanada Y et al. (2003) Hemodynamic changes after occlusion of the posterior superior sagittal sinus. An experimental PET-study in cats. Am J Neuroradiol 24:1876–1880

    Google Scholar 

  8. Schaller B, Graf R, Sanada Y et al. (2003) Hemodynamic and metabolic effects of decompressive hemicraniectomy in normal brain. An experimental PET-study in cats. Brain Res 982:31–37

    Google Scholar 

  9. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs AH, Li H, Winkeler A et al. (2003) PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30:1051–1065

    Google Scholar 

  11. Kennedy C, Sakurada O, Shinohara M et al. (1978) Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 4:293–301

    Google Scholar 

  12. Heiss WD, Grond M, Thiel A et al. (1997) Ischemic brain tissue salvaged from infarction with alteplase. Lancet 349:1599–1600

    Google Scholar 

  13. Lassen NA (1985) Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min. J Cereb Blood Flow Metab 5:347–349

    Google Scholar 

  14. Leenders KL, Perani D, Lammertsma AA et al. (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47

    PubMed  Google Scholar 

  15. Phelps ME, Huang SC, Hoffmann EJ et al. (1979) Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. J Nucl Med 20:328–34

    Google Scholar 

  16. Mintun MA, Raichle ME, Martin W et al. (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    Google Scholar 

  17. Phelps ME, Huang SC, Hoffman EJ et al. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    CAS  PubMed  Google Scholar 

  18. Herholz K, Heiss WD (1991) Positronemission-Tomographie zur Darstellung der Pathophysiologie der zerebralen Ischämie. Arzneimittelforschung 41:298–303

    Google Scholar 

  19. Powers WJ, Press GW, Grubb RL et al. (1987) The effect of hemodynamically significant carotid artery disease on the hemdoynamic status of the cerebral circulation. Ann Int Med 106:27–35

    Google Scholar 

  20. Heiss WD, Edmunds HG, Herholz K (1993) Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke 24:1784–1788

    Google Scholar 

  21. Suhonen-Polvi H, Kero P, Korvenranta H et al. (1993) Repeated fluorodeoxyglucose positron emission tomography on the brain in infarcts with suspected hypoxic-ischemic brain injury. Eur J Nucl Med 20:759–765

    Google Scholar 

  22. Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–830

    Google Scholar 

  23. Schaller B (2002) Head trauma: new pathophysiological and therapeutic aspects. part 1: the treatment in the primary phase. Swiss Surg 8:123–137

    Google Scholar 

  24. Adams JH (1984) Head injury. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s Neuropathology, 4 th edn. Edward Arnold, London, pp 85–124

  25. Henry TR, Engle J Jr, Mazziotta JC (1993) Clinical evaluation of interictal fluorine-18-fluordeoxyglucose PET in partial epilepsy. J Nucl Med 34:1892–1898

    Google Scholar 

  26. Gaillard WD, Bhatia S, Bookheimer SY et al. (1995) FDG-PET and volumetric MRI in the evalution of patients with partial epilepsy. Neurology 45.123–126

    Google Scholar 

  27. Juhasz C, Chugani D, Musik O et al. (2000) Relationsship between EEG and positron emission tomography abnormalities in clinical epilepsy. J Clin Neurophysiol 17:29–42

    Google Scholar 

  28. Engle J Jr, Henry TR, Swartz BE (1995) Positron emission tomography in frontal lobe epilepsy. Adv Neurol 66:223–238

    Google Scholar 

  29. Arnold S, Schlaug G, Niemann H et al. (1996) Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 46:1422–1430

    Google Scholar 

  30. Gaillard WD, Bhatia S, Bookheimer SY et al. (1995) FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology 45:123–126

    Google Scholar 

  31. Peyron R, Cinotti L, LeBars D et al. (1994) Effects of GABAA receptors activation on brain glucose metabolism in normal subjects and temporal lobe epilepsy (TLE) patients. A positron emission tomography (PET) study. Part II: The focal hypometablism is reactive to GABA agonist administration in TLE. Epilepsy Res 19:55–62

    Google Scholar 

  32. Sperling MR, Alavi A, Reivich M et al. (1995) False lateralization of temporal lobe epilepsy with FDG positron emission tomography. Epilepsia 36:722–727

    Google Scholar 

  33. Radtke RA, Hanson MW, Hoffman JM et al. (1993) Temporal lobe hypometabolism on PET: prediction of seizure control after temporal lobectomy. Neurology 43:1088–1092

    Google Scholar 

  34. Schaller B, Rüegg SJ (2003) Brain tumor and seizures—pathophysiology and treatment revisited. Epilepsia 44:1223–1232

    Google Scholar 

  35. Savic I, Ingvar M, Stone-Elander S (1993) Comparison of 11C flumazenil and 18F FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 56:615–621

    Google Scholar 

  36. Szelies B, Weber G, Mielke R et al. (2000) Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry. Eur J Neurol 7:393–400

    Google Scholar 

  37. Burdette DE, Sakurai SY, Henry TR et al. (1995) Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy. Neurology 45:934–941

    Google Scholar 

  38. Herholz K, Salamon E, Perani D et al. (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImagine 17:302–316

    Google Scholar 

  39. Herholz K, Salmon E, Perani D et al. (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImagine 17:302–316

    Google Scholar 

  40. Iyo M, Namba H, Fukushi K et al. (1997) Measurement of acetylcholinesterase by positron emission tomograph in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 349:1805–1809

    Google Scholar 

  41. Golan H, Kremer J, Freedman M et al. (1996) Usefulness of follow-up regional cerebral blood flow measurements by single-photon emission computed tomography in the differential diagnosis of dementia. J Neuroimaging 6:23–28

    Google Scholar 

  42. Heiss WD, Kessler J, Mielke R et al. (1994) Long-term effects of phosphatidylserine, pyrtiniol, and cognitive training in Alzheimer’s disease. A neuropsychological, EEG, and PET investigation. Dementia 5:88–98

    Google Scholar 

  43. Heiss WD, Kessler J, Slansky I et al. (1993) Activation PET as an instrument to determine therapeutic efficacy in Alzheimer’s disease. Ann NY Acad Sci 695:327–331

    Google Scholar 

  44. Shoghi-Jadid K, Small GW, Agdeppa ED et al. (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35

    Article  PubMed  Google Scholar 

  45. Baxter LR Jr, Phelps ME, Mazziotta JC et al. (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodesoxyglucose F18. Arch Gen Psychiatry 42:441–447

    Google Scholar 

  46. Baxter LR Jr, Schwartz JM, Phelps ME et al. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46:243–250

    Google Scholar 

  47. Catafau AM, Parellada E, Lemona FJ et al. (1994) Prefrontal and temporal blood flow in schizophrenia. J Nucl Med 35:935–941.

    Google Scholar 

  48. Lewis SW, Frod RA, Syed GM et al. (1992) A controlled study of 99mTc-HMPAO single-photon emission imaging in chronic schizophrenia. Psychol Med 22:27–35

    Google Scholar 

  49. Sedvall G (1992) The current status of PET scanning with respect to schizophrenia. Neuropsychopharmacology 7:41–54

    Google Scholar 

  50. Liddle PF, Friston KJ, Frith CD et al. (1992) Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry 160:179–186

    Google Scholar 

  51. Gunther W, Petsch R, Steinberg R et al. (1991) Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biol Psychiatry 29:535–555

    Google Scholar 

  52. Musalek M, Poderka I, Walter H et al. (1989) Regional brain function in hallucinations: a study of regional cerebral blood flow with 99m-Tc-HM-PAO-SPECT in patients with auditory hallucinations, tactile hallucinations, and normal controls. Comp Psychiatry 30:99–108

    Google Scholar 

  53. McGuire PK, Shah GM, Muray RM (1993) Increased blood flow in Boca’s area during auditory hallucinations in schizophrenia. Lancet 342:703–706

    Article  Google Scholar 

  54. Heinz A, Knäble MB, Weinberger DR. Dopamine D2 receptor imaging and neuroleptic drug response. J Clin Psychiatry 57 [Suppl 11]:84–93

  55. Nyberg S, Farde L, Halldin C et al. (1995) D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 152:173–178

    Google Scholar 

  56. Ebadi M, Peiffer RF, Murrin LC (1990) Pathogenesis and treatment of NMS. Gen Pharmacol 21:367–386

    Google Scholar 

  57. Jauss M, Krack P, Franz M et al. (1996) Imaging of dopamine receptors with (123I) Idobenzoamide single-photon emission-computed tomography in neuroleptic malignant syndrome. Mov Disord 11:726–728

    Google Scholar 

  58. Kramer EL, Sanger JJ (1990)Brain imaging in acquired immunodeficiency syndrome dementia complex. Seminars Nucl Med 20:353–363

    Google Scholar 

  59. Meyer JH, Paur S, Houle S et al. (1999) Prefrontal Cortex 5-HT2 receptors in depression. An (18F) setoperone PET imaging study. Am J Psychiatry 156:1029–1034

    Google Scholar 

  60. Eidelberg D, Moeller JR, Ishikawa T et al. (1994) Early differential diagnosis of Parkinson’s disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology 14:783–801

    Google Scholar 

  61. Leenders KL, Palmer AJ, Quinn N et al. (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neursurg Psychiatr 49:853–860

    Google Scholar 

  62. Brooks DJ (1997) Advances in imaging Parkinson’s disease. Curr Opin Neurol 10:327–331

    Google Scholar 

  63. Sawle GV, Leenders KL, Brooks DJ et al. (1991) Dopa-responsive dystonia: 18Fdopa positron emission tomography. Ann Neurol 30:24–30

    Google Scholar 

  64. Takei Y, Mirra S (1973) Striatonigral degeneration: a form of multiple system atrophy with clinical parkinsonism. In: Zimmermann HM (ed) Progress in neuropathology. Grune & Stratton, New York, pp 217–251

  65. Blin J, Baron JC, Dubois B et al. (1990) Positron emission tomography study in progressive supranuclear palsy. Arch Neurol 47:747–752

    Google Scholar 

  66. Wienhard K, Coenenen HH, Pawlik G et al. (1990) PET studies of dopamine receptor distribution using (18F)fluoroethylspiperone: findings in disorders related to the dopaminergic system. J Neurol Transm 81:195–213

    Google Scholar 

  67. Hilker R, Klein C, Ghaemi M et al. (2001) Positron emission tomography analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 49:367–376

    Google Scholar 

  68. Herholz K, Bauer B, Wienhard K et al. (2000) In-vivo measurements of regional acetylcholine esterase activity in degenrative dementia: comparison with blood flow and glucose metabolism. J Neuronal Transm 107:1457–1468

    Google Scholar 

  69. Marie RM, Rioux P, Eustache F et al. (1995) Clues about the functional neuroanatomy of verbal working memory: a study of resting brain glucose metabolism in Parkinson’s disease. Eur J Neurol 2:83–94

    Google Scholar 

  70. Ito K, Nagano A, Kato T et al. (2002) Striatal and extrastriatal dysfunction in parkinson‘ disease with dementia: a 6-(18F)fluoro-L-dopa PET study. Brain 125:1358–1365

    Google Scholar 

  71. Asahina M, Suhara T, Shinotoh H et al. (1998) Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry 65:155–163

    Google Scholar 

  72. Weber G (1977) Enzymology of cancer cells. N Engl J Med 296:541–551

    Google Scholar 

  73. Herholz K, Rudolf J, Heiss WD (1992) FDG transport and phosphorylation in human gliomas measured with dynamic PET. Neuro Oncol 12:159–165

    Google Scholar 

  74. Roelcke U, Leenders KL (2001) PET in neuro-oncology. J Cancer Res Clin Oncol 127:2–8

    Google Scholar 

  75. Holthoff VA, Herholz K, Berthold F et al. (1993) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermial tumors before and after treatment. Cancer 72:1394–1403

    CAS  PubMed  Google Scholar 

  76. Hölzer T, Herholz K, Jeske J et al. (1993) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 17:681–687

    Google Scholar 

  77. Cremerius U, Striepecke E, Henn W et al. (1994) 18FDG-PET in intracranial meningiomas versus grading, proliferation index, cellular density and cytogenetic analysis. Nuklearmedizin 33:144–149

    Google Scholar 

  78. Bustany P, Chatel M, Derlon JM et al. (1986) Brain tumor protein synthesis and histological grades: a study by positron emission tomography (PET) with C-11-L-methionine. J Neuro Oncol 3:397–404

    Google Scholar 

  79. Derlon JM, Petit-Taboue MC, Chapon F et al. (1997) The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucse and 11C-L-methylmethionine. Neurosurgery 40:276–288

    CAS  PubMed  Google Scholar 

  80. Freedman L, Slechen DH, Black SE et al. (1991) Posterior cortical dementia with alexia: neurobehavioural, MRI, and PET findings. J Neurol Neurosurg Psychiatry 54:443–448

    Google Scholar 

  81. Herholz K, Reulen HJ, Stockhausen HM et al. (1997) Preoperative activation and intraoperative activation and intraoperative stimulation of language-related areas in glioma patients. Neurosurgery 41:1253–1262

    CAS  PubMed  Google Scholar 

  82. Goldman S, Levivier M, Pirotte B et al. (1996) Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer 78:1098–1106

    Article  CAS  PubMed  Google Scholar 

  83. Barker FG, Chang SM, Valk PE et al. (1997) 18-Fluorodeoxy-glucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126

    Article  CAS  PubMed  Google Scholar 

  84. Kracht LW, Firese M, Herholz K et al. (2003) Methyl 11C Lmethionne uptake as measured by positron emission tomography correlates to micorvessel density in patients with glioma. Eur J Nucl Med 30:868–873

    CAS  PubMed  Google Scholar 

  85. Bergstrom M, Muhr C, Lundgerg PO et al. (1991) PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 32:610–615

    Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, B. Positronenemissionstomographie in den Neurowissenschaften. Radiologe 45, 186–196 (2005). https://doi.org/10.1007/s00117-004-1158-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1158-x

Schlüsselwörter

Keywords

Navigation