Skip to main content
Log in

Nah-Infrarot-Spektroskopie in der Psychiatrie

Near-infrared spectroscopy in psychiatry

  • Aktuelles
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Nah-Infrarot-Spektroskopie (NIRS) ist eine nichtinvasive optische Methode zur Messung der regionalen Hirngewebeoxygenierung in vivo. Licht aus dem nah-infraroten Spektrum kann die Schädelkalotte durchdringen und wird im Hirngewebe hauptsächlich von Oxy- (O2Hb) und Deoxyhämoglobin (HHb) absorbiert. Aus der Relation von in das Gehirn abgegebenem zu reflektiertem Nah-Infrarot-Licht kann daher spektrophotometrisch die regionale Konzentrationsänderung von O2Hb und HHb berechnet werden. Es wurde bereits gezeigt, dass NIRS nicht nur massive Hirndurchblutungsstörungen bei schweren neurologischen Erkrankungen erfassen kann, sondern dass die Methode auch ausreichend sensitiv ist, um bei gesunden Probanden aufgabenspezifische Aktivierungsmuster während definierter kognitiver Prozesse zu messen. Erste Untersuchungen an psychiatrischen Patienten weisen auf veränderte regionale Hirngewebsoxygenierungen im Vergleich zu Kontrollgruppen während kognitiver Aktivierungsaufgaben hin. NIRS hat aufgrund seiner unkomplizierten, schnellen Durchführung, seiner Nebenwirkunsfreiheit und der hohen Akzeptanz bei psychiatrischen Patienten eindeutige Vorteile im Vergleich zu anderen Methoden der funktionellen Bildgebung, die die Methode auch als potenzielles Screeningverfahren in der Psychiatrie attraktiv erscheinen lassen. Voraussetzung dafür ist allerdings, dass sich in Zukunft stabile und reliable NIRS-Parameter mit diagnostischem und/oder prognostischem Wert für bestimmte psychiatrische Erkrankungen entwickeln lassen, was nur durch eine breitere Nutzung dieser Methode in der psychiatrischen Forschung in Verbindung mit bereits etablierten Methoden der Neurophysiologie und der funktionellen Bildgebung gelingen wird.

Summary

Near-infrared spectroscopy (NIRS) is a noninvasive optical method for in vivo measurement of regional brain tissue oxygenation. Light from the near-infrared spectrum can penetrate the skull and is mainly absorbed by oxyhaemoglobin (O2Hb) and desoxyhaemoglobin (HHb). From the amount of reflected near-infrared light in relation to the amount absorbed by brain tissue, regional changes in O2Hb and HHb concentrations can be calculated spectrophotometrically. It has been shown that NIRS is not only able to measure massive disturbances in cerebral blood circulation due to serious neurological diseases, but that it also is sensitive enough to assess task-specific patterns of activation in healthy subjects during circumscribed cognitive processes. Preliminary investigations indicate altered regional brain tissue oxygenation in psychiatric patients during cognitive activation tasks. The NIRS outmatches other functional imaging methods in that it has no side effects and is well tolerated by psychiatric patients. Furthermore, it can be applied quickly and easily. Thus, NIRS is a potential screening method in psychiatric settings, provided that robust parameters of reliable diagnostic and/or prognostic value can be developed for individual psychiatric illnesses. However, this will depend on broader application of the method combined with established neurophysiological procedures and functional imaging techniques in psychiatric research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.

Literatur

  1. American National Standards Institut (2000) American National Standard for Safe Use of Lasers. New York, New York, pp 130

  2. Arthurs OJ and Boniface S (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci 25:27–31

    Google Scholar 

  3. Berman KF, Ostrem JL, Randolph C et al. (1995) Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A Positron Emission Tomography study. Neuropsychologia 33:1027–1046

    Google Scholar 

  4. Buchsbaum MS, Nuechterlein KH, Haier RJ et al. (1990) Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron tomography. Br J Psychiatry 156:216–227

    Google Scholar 

  5. Buxton RB (2001) The elusive initial dip. NeuroImage 13:953–958

    Google Scholar 

  6. Chance B (1991) Optical method. Ann Rev Biophys Chem 20:1–28

    Google Scholar 

  7. Cronin-Golomb A (1990) Abstract thought in aging and age–related neurological disease. In: Boller F, Grafman J (eds) Handbook of Neuropsychology Vol.4. Elsevier, Amsterdam, pp 279–310

  8. Crow T (1999) Twin studies of psychosis and the genetics of cerebral asymmetry. Br J Psychiatry 175:399–401

    Google Scholar 

  9. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurements. Phys Med Biol 33:1433–1442

    Google Scholar 

  10. Eschweiler GW, Wegerer C, Schlotter W, Spandl C, Stevens A, Bartels M, Buchkremer G (2000) Left prefrontal activation predicts therapeutic effects of repititive magnetic stimulation (rTMS) in major depression. Psychiatry Res Neuroimag 99:161–172

    Google Scholar 

  11. Fallgatter AJ, Strik WK (1997) Right frontal activation during performance of the Continuous Performance Test assessed with Near-Infrared Spectroscopy. Neurosci Lett 223:89–92

    Google Scholar 

  12. Fallgatter AJ, Brandeis D, Strik WK (1997) A Robust Assessment of the NoGo–Anteriorisation of P300 microstates in a cued Continuous Performance Test. Brain Topogr 9:295–302

    Google Scholar 

  13. Fallgatter AJ, Roesler M, Sitzmann L, Heidrich A, Mueller ThJ, Strik WK (1997) Loss of functional hemispheric asymmetry in Alzheimer's dementia assessed with near-infrared spectroscopy. Cog Brain Res 6:67–72

    Google Scholar 

  14. Fallgatter AJ, Müller ThJ, Strik WK (1998) Prefrontal Hypooxygenation during language processing assessed with Near-Infrared Spectroscopy. Neuropsychobiology 37:215–218

    Google Scholar 

  15. Fallgatter AJ, Strik WK (1998) Prefrontal Activation During The Wisconsin Card Sorting Test Assessed With Two–Channel Near-Infrared Spectroscopy. Eur Arch Psychiatry Clin Neur Sci 248:245–249

    Google Scholar 

  16. Fallgatter AJ, Strik WK (2000) Reduced frontal asymmetry in schizophrenia during a cued continuous performance test assessed with near-infrared-spectroscopy. Schizophr Bull 26:913–919

    Google Scholar 

  17. Fox PT, Raichle ME (1986) Focal Physiological Uncoupling of Cerebral Blood Flow and Oxidative Metabolism during Somatosensory Stimulation in Human Subjects. Proc Natl Acad Sci USA 83:1140–1144

  18. Häger F, Volz HP, Gaser C, Mentzel HJ, Kaiser WA, Sauer H (1998) Challenging the anterior attentional system with a continuous performance task: a functional magnetic resonance imaging approach. Eur Arch Psychiatry Clin Neurosci 248:161–170

    Google Scholar 

  19. Hart S, Smith CM, Swash M (1988) Word fluency in patients with early dementia of Alzheimer type. Br J Clin Psychology 27:115–124

    Google Scholar 

  20. Haxby JV, Grady CL, Koss E, Horwitz B, Schapiro M, Friedland RP (1988) Heterogeneous anterior–posterior metabolic patterns in dementia of the Alzheimer type. Neurology 38:1853–1863

    Google Scholar 

  21. Hirth C, Obrig H, Villringer K et al. (1996) Non–invasive functional mapping of the human motor cortex using near-infrared spectroscopy. NeuroReport 7:1977–1981

    Google Scholar 

  22. Hock C, Müller-Spahn F, Hofmann M et al. (1996) Near-infrared spectroscopy in the diagnosis of Alzheimer's disease. Ann NY Acad Sci 777:22–29

    Google Scholar 

  23. Hock C, Villringer K, Muller-Spahn F et al. (1997) Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near-infrared spectroscopy (NIRS)––correlation with simultaneous rCBF–PET measurements. Brain Res 755:293–303

    Google Scholar 

  24. Hoshi Y, Tamura M (1993) Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 150:5–8

    Google Scholar 

  25. Ito M, Suto T, Uehara T, Ida I, Fukuda M, Mikuni M (2003) Cerebral blood volume activation pattern as biological substrate of personality: Multi-channel near-infrared spectroscopy study in healthy subjects. In: Hirata K et al. (eds) Recent advances in human brain mapping. Elsevier Sci (im Druck)

  26. Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Google Scholar 

  27. Kato T, Kamei A, Takashima S, Ozaki T (1993) Human visual cortical function during photic stimulation monitoring by means of near-infrared specroscopy. J Cereb Blood Flow Metab 13:516–520

    Google Scholar 

  28. Kawasaki Y, Maeda Y, Suzuki M et al. (1993) SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophr Res 10:109–116

    Google Scholar 

  29. Kirkpatrick PJ (1997) Use of near–infrared spectroscopy in the adult. Philos Trans R Soc Lond B Biol Sci 352:701–705

    Google Scholar 

  30. Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by resonance imaging and near-infrared spectroscopy. J Cerebr Blood Flow Metab 16:817–827

    Google Scholar 

  31. Madsen PL, Secher NH (1999) Near-infrared oximetry of the brain. Prog Neurobiol 58:541–560

    Google Scholar 

  32. Matsuo K, Kato T, Fukuda M, Kato N (2000) Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near–infrared spectroscopy. J Neuropsychiatry Clin Neurosci 12:465–71

    Google Scholar 

  33. Merriam EP, Thase ME, Haas GL, Keshavan MS, Sweeney JA (1999) Prefrontal cortical dysfunction in depression determined by Wisconsin Card Sorting Test performance. Am J Psychiatry 156:780–782

    Google Scholar 

  34. Obrig H, Wenzel R, Kohl M, Horst S, Wobst P, Steinbrink J, Thomas F, Villringer A (2000) Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? Int J Psychophysiol 35:125–142

    Google Scholar 

  35. Okada F, Takahashi N, Tokumitsu Y (1996) Dominance of the "nondominant" hemisphere in depression. J Affect Disord 37:13–21

    Google Scholar 

  36. Parks RW, Loewenstein DA, Dodrill KL et al. (1988) Cerebral metabolic effects of a verbal fluency test: a PET scan study. J Clin Exp Neuropsychol 10:565–575

    Google Scholar 

  37. Strangman G, Boas DA, Sutton JP (2002) Non-invasive neuroimaging using near–infrared light. Biol Psychiatry 52:679–693

    Google Scholar 

  38. Strik WK, Fallgatter AJ, Brandeis D, Pascual-Marqui R (1998) Three dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol 108:406–413

    Google Scholar 

  39. Suto T, Ito M, Uehara T, Ida I, Fukuda M, Mikuni M (2003) Temporal characteristics of cerebral blood volume change in motor and somatosensory cortex revealed by multichannel near–infrared spectroscopy. In: Hirata K et al. (eds) Recent advances in human brain mapping, Elsevier Sci (im Druck)

  40. Videbech P (2000) PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 101:11–20

    Google Scholar 

  41. Villringer A, Planck J, Hock C, Schleikofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104

    Google Scholar 

  42. Wardle SP, Weindling AM (1999) Peripheral oxygenation in preterm infants. Clin Perinatol 26:947–966

    Google Scholar 

  43. Watanabe E, Maki A, Kawaguchi F, Takashiro K, Yamashita Y, Koizumi H, Mayanagi Y (1998) Non-invasive assessment of language dominance with near–infrared spectroscopic mapping. Neurosci Lett 256:49–52

    Google Scholar 

  44. Wobst P, Wenzel R, Kohl M, Obrig H, Villringer A (2001) Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation. NeuroImage 13:520–530

    Google Scholar 

  45. Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF (1996) Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry 153:200–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fallgatter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallgatter, A.J., Ehlis, A.C., Wagener, A. et al. Nah-Infrarot-Spektroskopie in der Psychiatrie. Nervenarzt 75, 911–916 (2004). https://doi.org/10.1007/s00115-002-1457-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-002-1457-2

Schlüsselwörter

Keywords

Navigation