Skip to main content

Advertisement

Log in

Side-effects of pesticides on non-target insects in agriculture: a mini-review

  • Review
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Climate change mediated by anthropogenic activity induces significant alterations on pest abundance and behavior and a potential increase in the use of agrochemicals for crop protection. Pesticides have been a tool in the control of pests, diseases, and weeds of agricultural systems. However, little attention has been given to their toxic effects on beneficial insect communities that contribute to the maintenance and sustainability of agroecosystems. In addition to pesticide-induced direct mortality, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. This review describes the sublethal effects of pesticides on agriculturally beneficial insects and provides new information about the impacts on the behavior and physiology of these insects. The different types of sublethal effects of pesticides used in agriculture on pollinators, predators, parasitoids, and coprophagous insects were detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: FAO 2020)

Similar content being viewed by others

References 

  • Acheampong S, Stark JD (2004) Effects of the agricultural adjuvant Sylgard 309 and the insecticide pymetrozine on demographic parameters of the aphid parasitoid, Diaeretiella rapae. Biol Control 31:133–137

    Article  CAS  Google Scholar 

  • Aghabaglou S, Alvandt S, Goldasteh S, Rafiei Karharoudi Z (2013) Study on ovicidal and side effects of diazinon and imidacloprid on Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae). J Entomol Zool Stud 1:22–26

    Google Scholar 

  • Alvarado F, Escobar F, Willians DR, Arroyo-Rodríguez V, Escobar-Hernández F (2018) The role of livestock intensification and landscape structure in maintaining tropical biodiversity. J Applied Ecol 55:185–194

    Article  Google Scholar 

  • Amaral KD, Martínez LC, Lima MAP, Serrão JE, Della Lucia TMC (2018) Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens. Environ Pollut 243:809–814

    Article  CAS  PubMed  Google Scholar 

  • Arthidoro de Castro MB, Martínez LC, Serra RS, Cossolin JFS, Serrão JE (2020) Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambdacyhalothrin. Chemosphere 248:126075

    Article  CAS  PubMed  Google Scholar 

  • Bastos CS, Almeida RP, Suinaga FA (2006) Selectivity of pesticides used in cotton (Gossypium hirsutum) to Trichogramma pretiosum reared on two factitious hosts. Pest Manag Sci 62:91–98

    Article  CAS  PubMed  Google Scholar 

  • Bayram A, Salerno G, Onofri A, Conti E (2010) Sub-lethal effects of two pyrethroids on biological parameters and behavioral responses to host cues in the egg parasitoid Telenomus busseolae. Biol Control 53:153–160

    Article  CAS  Google Scholar 

  • Belcher KW, Boehm MM, Fulton ME (2004) Agroecosystem sustainability: a system simulation model approach. Agr Syst 79:225–241

    Article  Google Scholar 

  • Beloti VH, Alves GR, Araújo DFD, Picoli MM, Moral RA, Demétrio CGB, Yamamoto PT (2015) Lethal and sublethal effects of insecticides used on citrus, on the ectoparasitoid Tamarixia radiata. PLoS ONE 10:1–14

    Article  CAS  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G, Vinuela E, Zappala L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Brethour C, Weersink A (2001) An economic evaluation of the environmental benefits from pesticide reduction. Agric Econ 25:219–226

    Article  Google Scholar 

  • Brunner JF, Dunley JE, Doerr MD, Beers EH (2001) Effect of pesticides on Colpoclypeus florus (Hymenoptera: Eulophidae) and Trichogramma platneri (Hymenoptera: Trichogrammatidae), parasitoids of leafrollers in Washington. J Econ Entomol 94:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Cabral S, Soares AO, Garcia P (2011) Voracity of Coccinella undecimpunctata: effects of insecticides when foraging in a prey/plant system. J Pest Sci 84:373–379

    Article  Google Scholar 

  • Calatayud-Vernich P, Calatayud F, Simó E, Picó Y (2018) Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ Pollut 241:106–114

    Article  CAS  PubMed  Google Scholar 

  • Camargo C, Hunt TE, Giesler LJ, Siegfried BD (2017) Thiamethoxam toxicity and effects on consumption behavior in Orius insidiosis (Hemiptera: Anthocoridae). Env Entomol 46:693–699

    Article  CAS  Google Scholar 

  • Campos JM, Martínez LC, Plata-Rueda A, Weigand W, Zanuncio JC, Serrão JE (2021) Insecticide potential of two saliva components of the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae) against Spodoptera frugiperda (Lepidoptera: Noctuidae) caterpillars. Toxin Rev. https://doi.org/10.1080/15569543.2020.1868008

    Article  Google Scholar 

  • Carneiro LS, Martínez LC, Gonçalves WG, Santana LM, Serrão JE (2020) The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers. Ecotoxicol Environ Saf 189:109991

    Article  CAS  PubMed  Google Scholar 

  • Carvalho GA, Reis PR, Rocha LCD, Moraes JC, Fuini LC, Ecole CC (2003) Side-effects of insecticides used in tomato fields on Trichogramma pretiosum (Hymenoptera, Trichogrammatidae). Acta Sci 25:275–279

    CAS  Google Scholar 

  • Castro BMDC, Martínez LC, Barbosa SG, Serrão JE, Wilcken CF, Soares MA, Silva AA, Carvalho AG, Zanuncio JC (2019) Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Sci Rep 9:6667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castro BMC, Martínez LC, Plata-Rueda A, Soares MA, Wilcken CF, Zanuncio AJV, Fiaz M, Zanuncio JC, Serrão JE (2021) Exposure to chlorantraniliprole reduces locomotion, respiration, and causes histological changes in the midgut of velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere 263:128008

    Article  CAS  PubMed  Google Scholar 

  • Catae AF, Roat TC, Oliveira RA, Ferreira Nocelli RC, Malaspina O (2014) Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Tech 77:274–281

    Article  CAS  PubMed  Google Scholar 

  • Chen TY, Liu TX (2002) Susceptibility of immature stages of Chrysoperla rufilabris (Neurop., Chrysopidae) to pyriproxyfen, a juvenile hormone analog. J Appl Entomol 126:125–129

    Article  CAS  Google Scholar 

  • Christen V, Kunz PY, Fent K (2018) Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators? Environ Pollut 243:1588–1601

    Article  CAS  PubMed  Google Scholar 

  • Clarke GM, Ridsdill-Smith TJ (1990) The effect of avermectin B1 on developmental stability in the bush fly, Musca vetustissima, as measured by fluctuating asymmetry. Entomol Exp Appl 54:265–269

    Article  Google Scholar 

  • Cloyd RA, Dickenson A (2006) Effect of insecticides on mealybug destroyer Coleoptera Coccinellidae and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae) natural enemies of citrus mealybug (Homoptera Pseudococcidae). J Econ Entomol 99:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Coulon M, Dalmon A, Di Prisco G, Prado A, Arban F, Dubois E, Ribière-Chabert M, Alaux C, Thiéry R, Le Conte Y (2020) Interactions between thiamethoxam and deformed wing virus can drastically impair flight behavior of honey bees. Front Microbiol 11:766

    Article  PubMed  PubMed Central  Google Scholar 

  • da Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62:578–582

    Article  Google Scholar 

  • Dadour IR, Cook DF, Hennessy D (2000) Reproduction and survival of the dung beetle Onthophagus binodis (Coleoptera: Scarabaeidae) exposed to abamectin and doramectin residues in cattle dung. Environ Entomol 29:1116–1122

    Article  CAS  Google Scholar 

  • Dai PL, Wang Q, Sun JH, Liu F, Wang X, Wu YY, Zhou T (2010) Effects of sublethal concentrations of bifenthrin and deltamethrin on fecundity, growth, and development of the honeybee Apis mellifera ligustica. Environ Toxicol Chem 29:644–649

    Article  CAS  PubMed  Google Scholar 

  • Dai P, Jack CJ, Mortensen AN, Ellis JD (2017) Acute toxicity of five pesticides to Apis mellifera larvae reared in vitro. Pest Manag Sci 73:2282–2286

    Article  CAS  PubMed  Google Scholar 

  • Dastjerdi HR, Hejazi MJ, Ganbalani GN, Saber M (2009) Sublethal effects of some conventional and biorational insecticides on ectoparasitoid, Habrobracon hebetor Say (Hymenoptera: Braconidae). J Entomol 6:82–89

    Article  CAS  Google Scholar 

  • De Castro AA, Poderoso JCM, Ribeiro RC, Legaspi JC, Serrão JE, Zanuncio JC (2015) Demographic parameters of the insecticide-exposed predator Podisus nigrispinus: implications for IPM. Biocontrol 60:231–239

    Article  CAS  Google Scholar 

  • DeClercq P, DeCock A, Tirry L, Viñuela E, Degheele D (1995) Toxicity of diflubenzuron and pyriproxyfen to the predatory bug Podisus maculiventris. Entomol Exp Appl 74:17–22

    Article  CAS  Google Scholar 

  • DeMicco A, Cooper KR, Richardson JR, White LA (2010) Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol Sci 113:177–186

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Denoyelle R, Kaiser L (2006) A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 65:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial Arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • DiBartolomeis M, Kegley S, Mineau P, Radford R, Klein K (2019) An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PloS One 14:e0220029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorneles AL, de Souza RA, Blochtein B (2017) Toxicity of organophosphorus pesticides to the stingless bees Scaptotrigona bipunctata and Tetragonisca fiebrigi. Apidologie 48:612–620

    Article  CAS  Google Scholar 

  • Dorneles AL, de Souza Rosa-Fontana A, Dos Santos CF, Blochtein B (2021) Larvae of stingless bee Scaptotrigona bipunctata exposed to organophosphorus pesticide develop into lighter, smaller and deformed adult workers. Environ Pollut 272:116414

    Article  CAS  PubMed  Google Scholar 

  • Dudley N, Attwood SJ, Goulson D, Jarvis D, Bharucha ZP, Pretty J (2017) How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems? Biol Conserv 209:449–453

    Article  Google Scholar 

  • FAO (2020) S. FAOSTAT database. Food Agric Organ UN Rome Italy. Available: http://www.fao.org/faostat/en/. Accessed 1 July 2021

  • Farder-Gomes CF, Fernandes KM, Bernardes RC, Bastos DSS, Martins GF, Serrão JE (2021) Acute exposure to fipronil induces oxidative stress, apoptosis and impairs epithelial homeostasis in the midgut of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). Sci Total Environ 774:145679

  • Fiaz M, Martínez LC, Plata-Rueda A, Gonçalves WG, Shareef M, Zanuncio JC, Serrão JE (2018) Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: noctuidae) larvae. Chemosphere 212:237–345

    Article  CAS  Google Scholar 

  • Fiaz M, Martínez LC, Plata-Rueda A, Gonçalves WG, Souza DLL, Cossolin JFS, Carvalho PEGR, Martins GF, Serrão JE (2019) Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. PeerJ 7:e7489

    Article  PubMed  PubMed Central  Google Scholar 

  • Fogel MN, Schneider MI, Desneux N, Gonzalez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556

    Article  CAS  Google Scholar 

  • Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions (SSD). Environ Toxicol Chem 25:2480–2489

    Article  CAS  PubMed  Google Scholar 

  • Galvan TL, Koch RL, Hutchison WD (2005) Toxicity of commonly used insecticides in sweet corn and soybean to multicolored Asian lady beetle (Coleoptera: Coccinellidae). J Econ Entomol 98:780–789

    Article  CAS  PubMed  Google Scholar 

  • George PJE, Ambrose DP (2004) Impact of insecticides on the haemogram of Rhynocoris kumarii Ambrose and Livingstone (Hem Reduviidae). J Appl Entomol 128:600–604

    Article  CAS  Google Scholar 

  • GholamzadehChitgar M, Hajizadeh J, Ghadamyari M, Karimi-Malati A, Hoda H (2014) Sublethal effects of diazinon, fenitrothion and chlorpyrifos on the functional response of predatory bug, Andrallus spinidens Fabricius (Hem.: Pentatomidae) in the laboratory conditions. J King Saudi Univ Sci 26:113–118

    Article  Google Scholar 

  • Golmohammadi Gh, Hejazi M, Iranipour Sh, Mohammadi SA (2009) Lethal and sublethal effects of endosulfan, imidacloprid and indoxacarb on first instar larvae of Chrysoperla carnea (Neu.: Chrysopidae) under laboratory conditions. J Entomol Soc Iran 28:37–47

    Google Scholar 

  • Grafton-Cardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae) in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398

    Article  CAS  PubMed  Google Scholar 

  • Guimarães-Cestaro L, Martins MF, Martínez LC, Alves MLTMF, Guidugli-Lazzarini KR, Nocelli RCF, Malaspina O, Serrão JE, Teixeira EW (2020) Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae: Meliponini) in the field. Sci Nat 107:16

    Article  CAS  Google Scholar 

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94:135–155

    Article  Google Scholar 

  • He F, Sun S, He L, Qin C, Li X, Zhang J, Jiang X (2020) Responses of Harmonia axyridis (Coleoptera: Coccinellidae) to sulfoxaflor exposure. Ecotox Environ Safe 189:109952

    Article  CAS  Google Scholar 

  • Hempel H, Scheffczyk A, Schallnaß H-J, Lumaret J-P, Alvinerie M, Römbke J (2006) Toxicity of four veterinary parasiticides on larvae of the dung beetle Aphodius constans in the laboratory. Environ Toxicol Chem 25:3155–3163

    Article  CAS  PubMed  Google Scholar 

  • Houlding B, Ridsdill-Smith TJ, Bailey WJ (1991) Injectable abamectin causes a delay in scarabaeine dung beetle egg-laying in cattle dung. Aust Vet J 68:185–186

    Article  CAS  PubMed  Google Scholar 

  • Iwasa M, Suzuki N, Maruyama M (2008) Effects of moxidectin on coprophagous insects in cattle dung pats in Japan. Appl Entomol Zool 43:271–280

    Article  Google Scholar 

  • Kairo G, Provost B, Tchamitchian S, Abdelkader FB, Bonnet M, Cousin M, Sénéchal J, Benet P, Belzunces LP, Brunet JL (2016) Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RJ (2019) Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol Evol 9:5637–5650

    Article  PubMed  PubMed Central  Google Scholar 

  • Kheradmand K, Khosravian M, Shahrokhi S (2012) Side effect of four insecticides on demographic statistics of aphid parasitoid, Diaeretiella rapae (McIntosh) (Hym., Braconidae). Ann Biol Res 3:3340–3345

    CAS  Google Scholar 

  • Kopit AM, Pitts-Singer TL (2018) Routes of pesticide exposure in solitary, cavity-nesting bees. Environ Entomol 47:499–510

    Article  CAS  Google Scholar 

  • Kristensen K, Jespersen JB (2004) Susceptibility of spinosad in Musca domestica (Diptera: Muscidae) field populations. J Econ Entomol 97:1042–1048

    Article  CAS  PubMed  Google Scholar 

  • Krüger K, Scholtz CH (1995) The effect of ivermectin on the development and reproduction of the dung-breeding fly Musca nevilli Kleynhans (Diptera, Muscidae). Agric Ecosyst Environ 53:13–18

    Article  Google Scholar 

  • Krüger K, Scholtz CH (1997) Lethal and sublethal effects of ivermectin on the dung breeding beetles Euoniticellus intermedius (Reiche) and Onitis alexis Klug (Coleoptera, Scarabaeidae). Agric Ecosys Environ 61:123–131

    Article  Google Scholar 

  • Kumar K, Santharam G (1999) Laboratory evaluation of imidacloprid against Trichogramma chilonis Ishii and Chrysoperla carnea (Stephens). J Biol Control 13:73–78

    Google Scholar 

  • Lima BSA, Martínez LC, Plata-Rueda A, Santos MH, Oliveira EE, Zanuncio JC, Serrão JE (2021) Interaction between predatory and phytophagous stink bugs promoted by secretion of scent glands. Chemoecology 31:209–219

    Article  CAS  Google Scholar 

  • Liu TX, Chen TY (2001) Effects of the insect growth regulator fenoxycarb on immature Chrysoperla rufilabris (Neuroptera: Chrysopidae). Fla Entomol 84:628–633

    Article  CAS  Google Scholar 

  • Lopes MP, Fernandes KM, Tomé HVV, Gonçalves WG, Miranda FR, Serrão JE, Martins GF (2018) Spinosad-mediated effects on the walking ability, midgut, and Malpighian tubules of Africanized honey bee workers. Pest Manag Sci 74:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Lumaret J-P, Alvinerie M, Hempel H, Schallnaß H-J, Claret D, Römbke J (2007) New screening test to predict the potential impact of ivermectin-contaminated cattle dung on dung beetles. Vet Res 38:15–24

    Article  CAS  PubMed  Google Scholar 

  • Lumaret J-P, Errouissi F, Floate K, Römbke J, Wardhaugh, (2012) A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechno 13:1004–1060

    Article  CAS  Google Scholar 

  • Lunardi JS, Zaluski R, Orsi RO (2017) Evaluation of motor changes and toxicity of insecticides fipronil and imidacloprid in Africanized honey bees (Hymenoptera: Apidae). Sociobiology 64:50–56

    Article  Google Scholar 

  • Mahon RJ, Wardhaugh KG, van Gerwen ACM, Whitby WA (1993) Reproductive development and survival of Lucilia cuprina Wiedemann when fed sheep dung containing ivermectin. Vet Parasitol 48:193–204

    Article  CAS  PubMed  Google Scholar 

  • Martínez LC, Plata-Rueda A, Zanuncio JC, Serrão JE (2014) Comparative toxicity of six insecticides on the rhinoceros beetle (Coleoptera: Scarabaeidae). Fla Entomol 97:1056–1062

    Article  Google Scholar 

  • Martínez LC, Fialho MCQ, Barbosa LCA, Oliveira LL, Zanuncio JC, Serrão JE (2016) Stink bug predator kill prey with salivary non-proteinaceous compounds. Insect Biochem Mol Biol 68:71–78

    Article  PubMed  CAS  Google Scholar 

  • Martínez LC, Plata-Rueda A, da Silva NG, Gonçalves WG, Zanuncio JC, Bozdoğan H, Serrão JE (2018) Permethrin induces histological and cytological changes in the midgut of the predatory bug, Podisus nigrispinus. Chemosphere 212:629–637

    Article  PubMed  CAS  Google Scholar 

  • Martínez LC, Plata-Rueda A, Rodríguez-Dimaté FA, Campos JM, Santos Júnior VCD, Rolim GDS, Fernandes FL, Silva WM, Wilcken CF, Zanuncio JC, Serrão JE (2019a) Exposure to insecticides reduces populations of Rhynchophorus palmarum in oil palm plantations with Bud Rot disease. Insects 10:111

    Article  PubMed Central  Google Scholar 

  • Martínez LC, Plata-Rueda A, Gonçalves WG, Freire AFPA, Zanuncio JC, Bozdoğan H, Serrão JE (2019b) Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. Ecotoxicol Environ Safe 167:69–75

    Article  CAS  Google Scholar 

  • Martínez LC, Plata-Rueda A, Serrão JE (2021) Effect of benzoylphenyl ureas on survival and reproduction of the lace bug. Leptopharsa Gibbicarina Insects 12:34

    Article  PubMed  Google Scholar 

  • Michaud JP (2001) Responses of two ladybeetles to eight fungicides used in Florida citrus: Implications for biological control. J Insect Sci 1:1–6

    Article  Google Scholar 

  • Michaud JP, Grant AK (2003) Sub-lethal effects of a copper sulfate fungicide on development and reproduction in three coccinellid species. J Insect Sci 3:1–6

    Google Scholar 

  • Mohaghegh J, De Clercq P, Tirry L (2000) Toxicity of selected insecticides to the spined soldier bug, Podisus maculiventris (Heteroptera: Pentatomidae). Biocontrol Sci Tech 10:33–40

    Article  Google Scholar 

  • Montesinos E, Bardaji E (2008) Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem Biodivers 5:1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Morais WCC, Plata-Rueda A, Martínez LC, Zanuncio AJV, Fernandes FL, Wilcken CF, Zanuncio JC, Serrão JE (2019) Potential of Diaphania hyalinata and Tenebrio molitor as alternative host for mass rearing of Palmistichus elaeisis (Hymenoptera: Eulophidae). Entomol Gen 3–4:285–294

    Article  Google Scholar 

  • Mussen EC, Lopez JE, Peng CY (2004) Effects of selected fungicides on growth and development of larval honey bees, Apis mellifera L. (Hymenoptera: Apidae). Environ Entomol 33:1151–1154

    Article  Google Scholar 

  • Nasreen A, Ashfaq M, Mustafa G, Khan R (2007) Mortality rates of five commercial insecticides on Chrysoperla carnea (Stephens) (Chrysopidae: Neuroptera). Pak J Agric Sci 44(2):266–271

    Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsenc T, Amezquita S, Favila ME (2008) The Scarabaeinae Research Network. Review: Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  • Osteen CD, Fernandez-Cornejo J (2013) Economic and policy issues of US agricultural pesticide use trends. Pest Manag Sci 69:1001–1025

    Article  CAS  PubMed  Google Scholar 

  • Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN (2013) Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun 4:1–8

    Article  CAS  Google Scholar 

  • Papaefthimiou C, Theophilidis G (2001) The cardiotoxic action of the pyrethroid insecticide deltamethrin, the azole fungicide prochloraz, and their synergy on the semi-isolated heart of the bee Apis mellifera macedonica. Pestic Biochem Physiol 69:77–91

    Article  CAS  Google Scholar 

  • Patrício-Roberto GB, Campos MJ (2014) Aspects of landscape and pollinators—What is important to bee conservation? Diversity 6:158–175

    Article  Google Scholar 

  • Plata-Rueda A, Martínez LC, Da Silva BKR, Zanuncio JC, Sena Fernandes ME, Serrão JE, Guedes RNC, Fernandes FL (2019a) Exposure to cyantraniliprole causes mortality and disturbs behavioral and respiratory response in the coffee berry borer (Hypothenemus hampei). Pest Manag Sci 75:2236–2241

    CAS  PubMed  Google Scholar 

  • Plata-Rueda A, Martínez LC, Costa NCR, Zanuncio JC, Sena Fernandes ME, Serrão JE, Guedes RNC, Fernandes FL (2019b) Chlorantraniliprole–mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotox Environ Safe 172:53–58

    Article  CAS  Google Scholar 

  • Plata-Rueda A, Rolim GDS, Wilcken CF, Zanuncio JC, Serrão JE, Martínez LC (2020a) Acute toxicity and sublethal effects of lemongrass essential oil and their components against the granary weevil. Sitophilus Granarius Insects 11:379

    Article  Google Scholar 

  • Plata-Rueda A, Menezes CHM, Cunha WS, Alvarenga TM, Barbosa BF, Zanuncio JC, Martínez LC, Serrão JE (2020) Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere 259:127530

    Article  CAS  Google Scholar 

  • Ramos-Jiliberto R, Moisset de Espanés P, Vázquez DP (2020) Pollinator declines and the stability of plant–pollinator networks. Ecosphere 11:e03069

    Article  Google Scholar 

  • Rembiałkowska E (2007) Quality of plant products from organic agriculture. J Sci Food Agric 87:2757–2762

    Article  CAS  Google Scholar 

  • Renzi MT, Amichot M, Pauron D, Tchamitchian S, Brunet JL, Kretzschmar A, Maini S, Belzunces LP (2016) Chronic toxicity and physiological changes induced in the honey bee by the exposure to fipronil and Bacillus thuringiensis spores alone or combined. Ecotox Environ Safe 127:205–213

    Article  CAS  Google Scholar 

  • Rolim GS, Plata-Rueda A, Martínez LC, Ribeiro GT, Serrão JE, Zanuncio JC (2020) Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Ecotox Environ Safe 189:109978

    Article  CAS  Google Scholar 

  • Rosenheim JA, Hoy MA (1988) Sublethal effects of pesticides on the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). J Econ Entomol 81:476–483

    Article  CAS  Google Scholar 

  • Saber M (2011) Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology 20:1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Saber M, Hejazi MJ, Kamali K, Moharramipour S (2005) Lethal and sublethal effects of fenitrothion and deltamethrin residues on the egg parasitoid Trissolcus grandis (Hymenoptera: Scelionidae). J Econ Entomol 98:35–40

    Article  CAS  PubMed  Google Scholar 

  • Salerno G, Colazza S, Conti E (2002) Sub-lethal effects of deltamethrin on walking behaviour and response to host kairomone of the egg parasitoid Trissolcus basalis. Pest Manag Sci 58:663–668

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Bayo F, Baskaran S, Kennedy IR (2002) Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agr Ecosyst Environ 91:37–57

    Article  Google Scholar 

  • Santos Junior VC, Martínez LC, Plata-Rueda A, Fernades FL, Tavares WS, Zanuncio JC, Serrão JE (2020) Histopathological and cytotoxic changes induced by spinosad on midgut cells of the non-target predator Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). Chemosphere 238:124585

    Article  PubMed  CAS  Google Scholar 

  • Santos-Junior VC, Martínez LC, Plata-Rueda A, Bozdoğan H, Zanuncio JC, Serrão JE (2019) Exposure to spinosad induces histopathological and cytotoxic effects on the salivary complex of the non-target predator Podisus nigrispinus. Chemosphere 225:688–695

    Article  CAS  PubMed  Google Scholar 

  • Sarmadi S, Ganbalani GN, Dastjerdi HR, Hassanpour M, Pourabad RF (2010) The effects of imidacloprid, indoxacarb and deltamethrin on some biological and demographic parameters of Habrobracon hebetor Say (Hymenoptera: Braconidae) in adult stage treatment. Mun Entomol Zool 5:646–651

    Google Scholar 

  • Saunders ME (2018) Insect pollinators collect pollen from wind-pollinated plants: implications for pollination ecology and sustainable agriculture. Insect Conserv Divers 11:13–31

    Article  Google Scholar 

  • Schneider MI, Smagghe G, Pineda S, Vinuela E (2004) Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid, Hyposoter didymator. Biol Control 31:189–198

    Article  CAS  Google Scholar 

  • Serra RS, Cossolin JFS, de Resende MTCS, de Castro MA, Oliveira AH, Martínez LC, Serrão JE (2021) Spiromesifen induces histopathological and cytotoxic changes in the midgut of the honeybee Apis mellifera (Hymenoptera: Apidae). Chemosphere 270:129439

    Article  CAS  PubMed  Google Scholar 

  • Settimi L, Orford R, Davanzo F, Hague C, Desel H, Pelclova D, Dragelyti G, Matheu-Nolf M, Adams R, Duarte-Davidson R (2016) Development of a new categorization system for pesticides exposure to support harmonized reporting between EU Member States. Environ Int 91:332–340

    Article  CAS  PubMed  Google Scholar 

  • Sicbaldi F, Sacchi GA, Trevisan M, Del Re AA (1997) Root uptake and xylem translocation of pesticides from different chemical classes. Pestic Sci 50:111–119

    Article  CAS  Google Scholar 

  • Silva WM, Martínez LC, Plata-Rueda A, Serrão JE, Zanuncio JC (2020) Respiration, predatory behavior and prey consumption by Podisus nigrispinus (Heteroptera: Pentatomidae) nymphs exposed to some insecticides. Chemosphere 261:127720

    Article  CAS  PubMed  Google Scholar 

  • Siviter H, Koricheva J, Brown MJ, Leadbeater E (2018) Quantifying the impact of pesticides on learning and memory in bees. J Appl Ecol 55:2812–2821

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares HM, Jacob CRO, Carvalho SM, Nocelli RCF, Malaspina O (2015) Toxicity of imidacloprid to the stingless bee Scaptotrigona postica Latreille, 1807 (Hymenoptera: Apidae). Bull Environ Contam Toxicol 94:675–680

    Article  CAS  PubMed  Google Scholar 

  • Soliman T, Mourits MCM, Lansink AO, Van der Werf W (2015) Quantitative economic impact assessment of invasive plant pests: What does it require and when is it worth the effort? Crop Prot 69:9–17

    Article  Google Scholar 

  • Sommer C, Grønvold J, Holter P, Nansen P (1993) Effects of ivermectin on two afrotropical dung beetles, Onthophagus gazella, and Diastellopalpus quinquedens (Coleoptera: Scarabaeidae). Vet Parasitol 48:171–179

    Article  CAS  PubMed  Google Scholar 

  • Sommer C, Van Jensen KM, Jespersen JB (2001) Topical treatment of calves with synthetic pyrethroids: effects on the non-target dung fly Neomyia cornicina (Diptera: Muscidae). Bull Entomol Res 91:131–137

    CAS  PubMed  Google Scholar 

  • Sponsler DB, Grozinger CM, Hitaj C, Rundlöf M, Botías C, Code A, Lonsdorf EV, Melathopoulos AP, Smith DJ, Suryanarayanan S, Thogmartin WE, Williams NM, Zhang M, Douglas MR (2019) Pesticides and pollinators: A socioecological synthesis. Sci Total Environ 662:1012–1027

    Article  CAS  PubMed  Google Scholar 

  • Stanley DA, Russell AL, Morrison SJ, Rogers C, Raine NE (2016) Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J Appl Ecol 53:1440–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stapel JO, Cortesero AM, Lewis WJ (2000) Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol Control 17:243–249

    Article  CAS  Google Scholar 

  • Stark JD, Banks JE (2001) Selective pesticides: Are they less hazardous to the environment? Bioscience 51:980–982

    Article  Google Scholar 

  • Stejskalová M, Konradyová V, Kazda J (2021) The influence of pesticides repellency used in oilseed rape (Brassica napus subsp. napus) on the preference by bees (Apis mellifera L.). J Apic Res 60:270–276

    Article  Google Scholar 

  • Syromyatnikov MY, Kokina AV, Lopatin AV, Starkov AA, Popov VN (2017) Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.). Pestic Biochem Physiol 135:41–46

    Article  CAS  PubMed  Google Scholar 

  • Taylor MA (2001) Recent Developments in Ectoparasiticides Vet J 161:253–268

    CAS  PubMed  Google Scholar 

  • Tomé HVV, Barbosa WF, Corrêa AS, Gontijo LM, Martins GF, Guedes RNC (2015) Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann Appl Biol 167:186–196

    Article  CAS  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc b: Biol Sci 365:2025–2034

    Article  Google Scholar 

  • Verheyen J, Delnat V, Stoks R (2019) Increased daily temperature fluctuations overrule the ability of gradual thermal evolution to offset the increased pesticide toxicity under global warming. Environ Sci Technol 53:4600–4608

    Article  CAS  PubMed  Google Scholar 

  • Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, Martínez-Morales M, González-Tokman D (2019) Dung beetle body condition: a tool for disturbance evaluation in contaminated pastures. Environ Toxicol Chem 38:2392–2404

    Article  CAS  PubMed  Google Scholar 

  • Wagner V, Antunes PM, Irvine M, Nelson CR (2017) Herbicide usage for invasive non-native plant management in wildland areas of North America. J Appl Ecol 54:198–204

    Article  Google Scholar 

  • Walker MK, Stufkens MAW, Wallace AR (2007) Indirect non-target effects of insecticides on Tasmanian brown lacewing (Micromus tasmaniae) from feeding on lettuce aphid (Nasonovia ribisnigri). Biol Control 43:31–40

    Article  CAS  Google Scholar 

  • Wardhaugh KG, Holter P, Whitby WA, Shelley K (1996) Effects of drug residues in the faces of cattle treated with injectable formulations of ivermectin and moxidectin on larvae of the bush fly, Musca vetustissima and the house fly Musca domestica. Aust Vet J 74:370–374

    Article  CAS  PubMed  Google Scholar 

  • Wardhaugh KG, Holter P, Longstaff BC (2001) The development and survival of three species of coprophagous insect after feeding on the faeces of sheep treated with controlled-release formulations of ivermectin or albendazole. Aust Vet J 79:125–132

    Article  CAS  PubMed  Google Scholar 

  • Webb L, Beaumont DJ, Nager RG, McCracken DI (2010) Fieldscale dispersal of Aphodius dung beetles (Coleoptera: Scarabaeidae) in response to avermectin treatments on pastured cattle. Bull Ent Res 100:175–183

    Article  CAS  Google Scholar 

  • Weibull AC, Östman Ö, Granqvist Å (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1335–1355

    Article  Google Scholar 

  • White WH, McCoy CM, Meyer JA, Winkle JR, Plummer PR, Kemper CJ, Starkey R, Snyder DE (2007) Knockdown and mortality comparisons among spinosad-, imidacloprid-, and methomyl-containing baits against susceptible Musca domestica (Diptera: Muscidae) under laboratory conditions. J Econ Entomol 100:155–163

    Article  PubMed  Google Scholar 

  • Wintermantel D, Odoux JF, Decourtye A, Henry M, Allier F, Bretagnolle V (2020) Neonicotinoid-induced mortality risk for bees foraging in oilseed rape nectar persists despite EU moratorium. Sci Total Env 704:135400

    Article  CAS  Google Scholar 

  • Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PloS One 6:e14720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Ding J, Zhao Y, Luo J, Mu W, Zhang Z (2017) Cyantraniliprole at sublethal dosages negatively affects the development, reproduction, and nutrient utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). J Econ Entomol 110:230–238

    CAS  PubMed  Google Scholar 

  • Yoshioka T, Takeda M (2006) Effects of pesticides on Thomsonisca typica Mercet and Arrhenophagus chionaspidis Girault, parasitoids of Pseudaulacaspis pentagona (Targioni). Bull Fukuoka Agric Res Cent 25:145–149

    Google Scholar 

  • Zanuncio TV, Serrão JE, Zanuncio JC, Guedes RNC (2003) Permethrin-induced hormesis on the predator Supputius cincticeps (Stål, 1860) (Heteroptera: Pentatomidae). Crop Prot 22:941–947

    Article  CAS  Google Scholar 

  • Zanuncio JC, Mourão SA, Martínez LC, Wilcken CF, Ramalho FS, Plata-Rueda A, Serrão JE (2016) Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae). Sci Rep 6:30261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanuncio JC, Lacerda MC, Alcántara-de la Cruz R, Brügger BP, Pereira AI, Wilcken CF, Serrão JE, Sediyama CS (2018) Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotox Environ Safe 147:245–250

    Article  CAS  Google Scholar 

  • Zhang W, Swinton SM (2009) Incorporating natural enemies in an economic threshold for dynamically optimal pest management. Ecol Model 220:1315–1324

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Enedina Sacramento to check manuscript for improvement of English language.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico,303467/2018–5,José Eduardo Serrão,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,code 001,Luis Carlos Martínez,Fundação de Amparo à Pesquisa do Estado de Minas Gerais,APQ-02367–18,José Eduardo Serrão

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Serrão.

Additional information

Communicated by: William Walker

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrão, J.E., Plata-Rueda, A., Martínez, L.C. et al. Side-effects of pesticides on non-target insects in agriculture: a mini-review. Sci Nat 109, 17 (2022). https://doi.org/10.1007/s00114-022-01788-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-022-01788-8

Keywords

Navigation