Skip to main content
Log in

Neurobiology of the homing pigeon—a review

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Homing pigeons are well known as good homers, and the knowledge of principal parameters determining their homing behaviour and the neurological basis for this have been elucidated in the last decades. Several orientation mechanisms and parameters—sun compass, earth’s magnetic field, olfactory cues, visual cues—are known to be involved in homing behaviour, whereas there are still controversial discussions about their detailed function and their importance. This paper attempts to review and summarise the present knowledge about pigeon homing by describing the known orientation mechanisms and factors, including their pros and cons. Additionally, behavioural features like motivation, experience, and track preferences are discussed. All behaviour has its origin in the brain and the neuronal basis of homing and the neuroanatomical particularities of homing pigeons are a main topic of this review. Homing pigeons have larger brains in comparison to other non-homing pigeon breeds and particularly show increased size of the hippocampus. This underlines our hypothesis that there is a relationship between hippocampus size and spatial ability. The role of the hippocampus in homing and its plasticity in response to navigational experience are discussed in support of this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Able KP (1996) The debate over olfactory navigation by homing pigeons. J Exp Biol 199:121–124

    Google Scholar 

  • Alleva E, Baldaccini NE, Foa A, Visalberghi E (1975) Homing behaviour of the Rock pigeon. Monit Zool Ital (NS) 9:213–224

    Google Scholar 

  • Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199

    Article  PubMed  Google Scholar 

  • Baker RR (1984) Bird navigation: the solution of a mystery. Hodder and Stoughten, London

    Google Scholar 

  • Barton RA, Harvey P (2000) Mosaic evolution of brain structures in mammals. Nature 405:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Beason RC, Semm P (1996) Does the ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    PubMed  Google Scholar 

  • Beason RC, Dussourd N, Deutschlander ME (1995) Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–146

    PubMed  Google Scholar 

  • Begall S, Cerveny J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci U S A 105:13451–13455

    Article  PubMed  CAS  Google Scholar 

  • Benvenuti S, Fiaschi V (1983) Pigeon homing: combined effect of olfactory deprivation and visual impairment. Comp Biochem Physiol 76:719–723

    Article  Google Scholar 

  • Berndt R, Meise W (1962) Naturgeschichte der Vögel. Franckh’sche Verlagshandlung, Stuttgart

    Google Scholar 

  • Bingmann VP (1993) Vision, cognition and the avian hippocampus. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behaviour in birds. MIT Press, Cambridge

    Google Scholar 

  • Bingman VP, Mench JA (1990) Homing behavior of hippocampus and parahippocampus lesioned pigeons following short-distance releases. Behav Brain Res 40:227–238

    Article  PubMed  CAS  Google Scholar 

  • Bingmann VP, Hough GE II, Kahn MC, Siegel JJ (2003) The homing pigeon hippocampus and space: in search of adaptive specialization. Brain Behav Evol 62:117–127

    Article  Google Scholar 

  • Bingman VP, Gagliardo A, Hough GE, Ioalè P, Kahn MC, Siegel JJ (2005) The avian hippocampus, homing in pigeons and the memory representation of large scale-space. Integr Comp Biol 45:555–564

    Article  Google Scholar 

  • Biro D, Guilford T, Dell’Omo G, Lipp HP (2002) How the viewing of familiar landscapes prior to release allows pigeons to home faster: evidence from GPS tracking. J Exp Biol 205:3833–3844

    PubMed  Google Scholar 

  • Biro D, Meade J, Guilford T (2004) Familiar route loyalty implies visual pilotage in the homing pigeon. Proc Natl Acad Sci U S A 101(50):17440–17443

    Article  PubMed  CAS  Google Scholar 

  • Biro D, Sumpter DJT, Meade J, Guilford T (2006) From compromise to leadership in pigeon homing. Curr Biol 16:2123–2128

    Article  PubMed  CAS  Google Scholar 

  • Biro D, Freeman R, Meade J, Roberts S, Guilford T (2007) Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci U S A 104(18):7471–7476

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite VA, Guilford T (1991) Viewing familiar landscape affects pigeon homing. Proc R Soc Lond B 245:183–186

    Article  Google Scholar 

  • Burt T, Holland R, Guilford T (1997) Further evidence for visual landmark involvement in the pigeon’s familiar area map. Anim Behav 53:1203–1209

    Article  PubMed  Google Scholar 

  • Casini G, Bingmann VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGH-HRP and ³H-Proline. J Comp Neurol 245:454–470

    Article  PubMed  CAS  Google Scholar 

  • Chappell JM, Guilford TC (1997) The oriental salience of visual cues to the homing pigeon. Anim Behav 53:287–296

    Article  Google Scholar 

  • Clayton NS (1995) Development of memory and the hippocampus: comparison of food-storing and nonstoring birds one a one-trial associative memory task. J Neurosci 15:2796–2807

    PubMed  CAS  Google Scholar 

  • Clayton NS (1996) Development of food-storing and the hippocampus in juvenile marsh tits (Parus palustris). Behav Brain Res 74:153–159

    Article  PubMed  CAS  Google Scholar 

  • Clayton NS, Krebs JR (1994) Hippocampal growth and attrition in birds affected by experience. Proc Natl Acad Sci U S A 91:7410–7414

    Article  PubMed  CAS  Google Scholar 

  • Cnotka J, Möhle M, Rehkämper G (2008) Navigational experience affects hippocampal size in homing pigeons. Brain Behav Evol 72(3):179–250

    Article  Google Scholar 

  • Csernus VJ (2006) The avian pineal gland. Chronobiol Int 23:329–339

    Article  PubMed  CAS  Google Scholar 

  • Davila AF, Winklhofer M, Shcherbakov VP, Petersen N (2005) Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys J 89(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Della Chiesa A, Pecchia T, Tommasi L, Vallortigara G (2006) Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain. Anim Cogn 9:281–293

    Article  PubMed  Google Scholar 

  • Demaine C, Semm P (1985) The avian pineal gland as an independent magnetic sensor. Neurosci Lett 62:119–122

    Article  PubMed  CAS  Google Scholar 

  • Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 274:1153–1158

    Article  PubMed  Google Scholar 

  • Deutschlander ME, Borland SC, Phillips JB (1999) Extraocular magnetic compass in newts. Nature 400:324–325

    Article  PubMed  CAS  Google Scholar 

  • Ebinger P (1980) Zur Hirn-Körpergewichtsbeziehung bei Wölfen und Haushunden sowie Haushundrassen. Z Säugetierkde 45:148–153

    Google Scholar 

  • Ebinger P, Rehkämper G, Schröder H (1992) Forebrain specialization and the olfactory system in anseriform birds. An architectonical and tracing study. Cell Tissue Res 268:81–90

    Article  PubMed  CAS  Google Scholar 

  • Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Article  PubMed  CAS  Google Scholar 

  • Floody OR, Arnold AP (1997) Song lateralization in the zebra finch. Horm Behav 31:25–34

    Article  PubMed  CAS  Google Scholar 

  • Füller E, Kowalski U, Wiltschko R (1983) Orientation of homing pigeons: compass orientation vs piloting by familiar landmarks. J Comp Physiol 153:55–58

    Article  Google Scholar 

  • Gagliardo A, Mazzotto M, Bingman VP (1997) Piriform cortex ablations block navigational map learning in homing pigeons. Behav Brain Res 86:143–148

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Bingman VP (1999) Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. J Neurosci 19:311–315

    PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Odetti F, Bingman VP (2001a) The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period. Proc R Soc Lond B 268:197–202

    Article  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Odetti F, Bingman VP, Siegel JJ, Vallortigara G (2001b) Hippocampus and homing in pigeons: left and right hemispheric differences in navigational map learning. Eur J Neurosci 13:1617–1624

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A, Odetti F, Ioalè P, Bingman VP, Tuttle S, Vallortigara G (2002) Bilateral participation of the hippocampus in familiar landmark navigation by homing pigeons. Behav Brain Res 136:201–209

    Article  PubMed  Google Scholar 

  • Gagliardo A, Odetti F, Ioalè P, Pecchia T, Vallortigara G (2005a) Functional asymmetry of left and right avian piriform cortex in homing pigeons’ navigation. Eur J Neurosci 22:189–194

    Article  PubMed  Google Scholar 

  • Gagliardo A, Vallortigara G, Nardi D, Bingman VP (2005b) A lateralized avian hippocampus: preferential role of the left hippocampal formation in homing pigeon sun compass-based learning. Eur J Neurosci 22:2549–2559

    Article  PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild JM (2006) Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. J Exp Biol 209:2888–2892

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Lipp HP, Dell’Omo G (2007a) Finding home: the final step of the pigeons’ homing process studied with a GPS data logger. J Exp Biol 210:1132–1138

    Article  PubMed  Google Scholar 

  • Gagliardo A, Pecchia T, Savini M, Odetti F, Ioalè P, Vallortigara G (2007b) Olfactory lateralization in homing pigeons: initial orientation of birds receiving a unilateral olfactory input. Eur J Neurosci 25:1511–1516

    Article  PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild M (2008) Navigational abilities of homing pigeons deprived of olfactory or trigeminally mediated magnetic information when young. J Exp Biol 211:2046–2051

    Article  PubMed  Google Scholar 

  • Geyr von Schweppenburg H (1922) Zur Theorie des Vogelzuges. J Orn 70:361–385

    Article  Google Scholar 

  • Gould JL (2006) Homing behaviour: decisions, dominance and democracy. Curr Biol 16(21):R920–R921

    Article  PubMed  CAS  Google Scholar 

  • Griffin DR (1952) Bird navigation. Biol Rev Camb Phil Soc 27:359–400

    Article  Google Scholar 

  • Güntürkün O (1991) The functional organization of the avian visual system. In: Andrew RJ (ed) Neural and behavioural plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Güntürkün O (1997) Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 116:561–566

    Google Scholar 

  • Haase E, Otto C, Murbach H (1977) Brain weight in homing and ‘non-homing’ pigeons. Experientia 33:606

    Article  PubMed  CAS  Google Scholar 

  • Hanzlik M, Heunemann C, Holtkamp-Rötzler E, Winklhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. BioMetals 13:325–331

    Article  PubMed  CAS  Google Scholar 

  • Healy SD, Krebs JR (1992) Food-storing and the hippocampus in corvids: amount and volume are correlated. Proc R Soc Lond B 248:241–245

    Article  Google Scholar 

  • Healy SD, Gwinner E, Krebs JR (1996) Hippocampal volume in migratory and non-migratory warblers: effects of age and experience. Behav Brain Res 81:61–68

    Article  PubMed  CAS  Google Scholar 

  • Hemmer H (1990) Domestication: the decline of environmental appreciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Hodos W, Erichsen JT (1990) Lower-field myopia in birds—an adaptation that keeps the ground in focus. Vision Res 30:653–657

    Article  PubMed  CAS  Google Scholar 

  • Holland RA (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773–1778

    Article  PubMed  Google Scholar 

  • Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M (2006) Bat orientation using earth’s magnetic field. Nature 444:702

    Article  PubMed  CAS  Google Scholar 

  • Hough GE, Bingman VP (2008) Rotation of visual landmark cues influences the spatial response profile of hippocampal neurons in freely-moving homing pigeons. Behav Brain Res 187:473–477

    Article  PubMed  Google Scholar 

  • Hough GE II, Pang KCH, Bingman VP (2002) Intrahippocampal connections in the pigeon (Columba livia) as revealed by stimulation evoked field potentials. J Comp Neurol 452:297–309

    Article  PubMed  Google Scholar 

  • Howard KJ, Rogers LJ, Boura ALA (1980) Functional lateralization of the chicken forebrain revealed by use of intracranial glutamate. Brain Res 188:369–382

    Article  PubMed  CAS  Google Scholar 

  • Ioalè P (2000) Pigeon orientation: effects of the application of magnets under overcast skies. Naturwissenschaften 87:232–235

    Article  PubMed  Google Scholar 

  • Ioalè P, Benvenuti S (1983) Pigeon homing: further experiments on shielded lofts. Comp Biochem Physiol 76A(4):725–731

    Article  Google Scholar 

  • Ioalè P, Nozzolini M, Papi F (1990) Homing pigeons do extract directional information from olfactory stimuli. Behav Ecol Sociobiol 26:301–305

    Article  Google Scholar 

  • Ioalè P, Gagliardo A, Bingman VP (2000a) Further experiments on the relationship between hippocampus and orientation following phase-shift in homing pigeons. Behav Brain Res 108:157–167

    Article  PubMed  Google Scholar 

  • Ioalè P, Gagliardo A, Bingman VP (2000b) Hippocampal participation in navigational map learning in young homing pigeons is dependent on training experience. Eur J Neurosci 12:742–750

    Article  PubMed  Google Scholar 

  • Ioalè P, Savini M, Gagliardo A (2007) Pigeon homing: the navigational map developed in adulthood is based on olfactory information. Ethology 114:95–102

    Google Scholar 

  • Iwaniuk AN, Dean KM, Nelson JE (2004) A mosaic pattern characterizes the evolution of the avian brain. Proc R Soc Lond B 271:S148–S151

    Article  Google Scholar 

  • Jacobs LF (2003) The evolution of the cognitive map. Brain Behav Evol 62:128–139

    Article  PubMed  Google Scholar 

  • Johnston RF, Janiga M (1995) Feral pigeons. Oxford University Press, Oxford

    Google Scholar 

  • Kahn MC, Bingman V (2004) Lateralization of spatial learning in the avian hippocampal formation. Behav Neurosci 118:333–344

    Article  PubMed  Google Scholar 

  • Kahn MC, Hough GE II, Ten Eyck GR, Bingman VP (2003) Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study. J Comp Neurol 459:127–141

    Article  PubMed  Google Scholar 

  • Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple bearings hypothesis. J Exp Biol 204:103–113

    PubMed  CAS  Google Scholar 

  • Karten HJ (1979) Visual lemniscal pathways in birds. In: Granda AM, Maxwell JM (eds) Neural mechanisms of behaviour in the pigeon. Plenum, New York, pp 409–430

    Google Scholar 

  • Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci U S A 68(1):102–106

    Article  PubMed  CAS  Google Scholar 

  • Kimchi T, Terkel J (2001) Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J Exp Biol 204:751–758

    PubMed  CAS  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–202

    Article  PubMed  CAS  Google Scholar 

  • Kramer G (1953) Die Sonnenorientierung der Vögel. Verh Dtsch Zool Ges, Zool Anz Suppl 16:72–84

    Google Scholar 

  • Kruska D (1980) Domestikationsbedingte Hirngrössenänderungen bei Säugetieren. Z zool Syst Evolut-forsch 18:161–195

    Google Scholar 

  • Lednor AJ, Walcott C (1983) Homing pigeon navigation: the effects of in-flight exposure to a varying magnetic field. Comp Biochem Physiol 76A(4):665–671

    Article  Google Scholar 

  • Lipp HP (1996) “Columba militaris helvetica”: Biologie und Verhaltensleistungen der Schweizer Armeebrieftauben. In: Rehkämper G, Greven H (eds) Beiträge zur Biologie der Haus- und Nutztiere. Acta Biol Benrodis (Suppl 3):85–103

  • Lipp HP, Vyssotski AL, Wolfer DP, Renaudineau S, Savini M, Tröster G, Dell’Omo G (2004) Pigeon homing along highways and exits. Curr Biol 14:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Mai JK, Semm P (1990) Patterns of glucose utilization following magnetic stimulation. J Hirnforsch 31:331–336

    PubMed  CAS  Google Scholar 

  • Matthews GVT (1953) The orientation of untrained pigeons: a dichotomy in the orientation process. J Exp Biol 30:268–276

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap, Cambridge

    Google Scholar 

  • Meade J, Biro D, Guilford T (2005) Homing pigeons develop local route stereotypy. Proc R Soc B 272:17–23

    Article  PubMed  Google Scholar 

  • Meade J, Biro D, Guilford T (2006) Route recognition in the homing pigeon, Columba livia. Anim Behav 72:975–980

    Article  Google Scholar 

  • Michener M, Walcott C (1967) Homing of single pigeons-analyses of tracks. J Exp Biol 47:99–131

    PubMed  CAS  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  PubMed  CAS  Google Scholar 

  • Muheim R, Moore FR, Phillips JB (2006) Calibration of magnetic and celestial compass cues in migratory birds- a review of cue-conflict experiments. J Exp Biol 209:2–17

    Article  PubMed  Google Scholar 

  • Nadel L, Hardt O (2004) The spatial brain. Neuropsychology 18:473–476

    Article  PubMed  Google Scholar 

  • Nardi D, Bingman VP (2007) Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behav Brain Res 178:160–171

    Article  PubMed  Google Scholar 

  • Papi F, Casini G (1990) Pigeons with ablated pyriform cortex home from familiar but not from unfamiliar sites. Proc Natl Acad Sci U S A 87:3783–3787

    Article  PubMed  CAS  Google Scholar 

  • Papi F, Ioalè P, Fiaschi V, Benvenuti S, Baldaccini NE (1974) Olfactory navigation of pigeons: the effect of treatment with odorous air currents. J Comp Physiol 94:187–193

    Article  Google Scholar 

  • Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310

    Article  PubMed  Google Scholar 

  • Rashid N, Andrew RJ (1989) Right hemisphere advantage for topographical orientation in the domestic chick. Neuropsychologia 27:937–948

    Article  PubMed  CAS  Google Scholar 

  • Rehkämper G (1981) Vergleichende Architektonik des Neocortex der Insectivora. Z Zool Syst Evolutionsforsch 19:233–263

    Article  Google Scholar 

  • Rehkämper G, Zilles K (1991) Parallel evolution in mammalian and avian brains: cytoarchitectonical and cytochemical analysis. Cell Tissue Res 263:3–28

    Article  PubMed  Google Scholar 

  • Rehkämper G, Haase E, Frahm HD (1988) Allometric comparison of brain weight and brain structure volumes in different breeds of the domestic pigeon, Columba livia f.d. (Fantails, Homing Pigeons, Strasser). Brain Behav Evol 31:141–149

    Article  PubMed  Google Scholar 

  • Rehkämper G, Kart E, Frahm HD, Werner CW (2003) Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav Evol 61:59–69

    Article  PubMed  Google Scholar 

  • Rehkämper G, Frahm HD, Cnotka J (2008) Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain Behav Evol 71:115–126

    Article  PubMed  Google Scholar 

  • Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Com Neurol 473:377–414

    Article  Google Scholar 

  • Rice SH (2004) Evolutionary theory. Mathematical and conceptual foundations. Sinauer, Sunderland

    Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707–718

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180

    Article  PubMed  CAS  Google Scholar 

  • Rogers L (1996) Behavioral, structural and neurochemical asymmetries in the avian brain: a model system for studying visual development and processing. Neurosci Biobehav R 20:487–503

    Article  CAS  Google Scholar 

  • Rogers L, Anson JM (1979) Lateralisation of function in the chicken fore-brain. Pharmacol Biochem Be 10:679–686

    Article  CAS  Google Scholar 

  • Schmidt-König K (1990) The sun compass. Experientia 46:336–342

    Article  Google Scholar 

  • Schmidt-Koenig K, Schlichte HJ (1972) Homing in pigeons with impaired vision. Proc Natl Acad Sci U S A 69(9):2446–2447

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Koenig K, Walcott C (1978) Tracks of pigeon homing with frosted lenses. Anim Behav 26:480–486

    Article  Google Scholar 

  • Semm P (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp Biochem Physiol 76A(4):683–689

    Article  CAS  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625

    Article  PubMed  CAS  Google Scholar 

  • Semm P, Nohr D, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 155:283–288

    Article  Google Scholar 

  • Shapiro E, Wieraszko A (1996) Comparative, in vitro, studies of hippocampal tissue from homing and non-homing pigeon. Brain Res 725:199–206

    PubMed  CAS  Google Scholar 

  • Sherry DF, Jacobs LF, Gaulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15(8):298–303

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Bowers AN (1999) Visual circuits of the avian telencephalon: evolutionary implications. Behav Brain Res 98:183–191

    Article  PubMed  CAS  Google Scholar 

  • Sossinka R (1982) Domestication in birds. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol VI. Academic, New York, pp 173–403

    Google Scholar 

  • Stapput K, Thalau P, Wiltschko R, Wiltschko W (2008) Orientation of birds in total darkness. Curr Biol 18:602–606

    Article  PubMed  CAS  Google Scholar 

  • Steiner I, Bürgi C, Werffeli S, Dell’Omo G, Valenti P, Tröster G, Wolfer DP, Lipp HP (2000) A GPS logger and software for analysis of homing in pigeons and small mammals. Physiol Behav 71:589–596

    Article  PubMed  CAS  Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, 4. Band Nervensystem. Springer, Heidelberg, pp 1–998

    Google Scholar 

  • Stephan H, Baron G, Frahm HD (1991) Comparative brain research in mammals. Insectivora, vol 1. Springer, Berlin

    Google Scholar 

  • Strasser R, Bingman VP, Ioalè P, Casini G, Bagnoli P (1998) The homing pigeon hippocampus and the development of landmark navigation. Dev Psychobiol 33:305–315

    Article  PubMed  CAS  Google Scholar 

  • Tommasi L, Vallortigara G (2001) Encoding of geometric and landmark information in the left and right hemisphere of the avian brain. Behav Neurosci 115:602–613

    Article  PubMed  CAS  Google Scholar 

  • Tommasi L, Vallortigara G (2004) Hemispheric processing of landmark and geometric information in male and female domestic chicks (Gallus gallus). Behav Brain Res 155:85–96

    Article  PubMed  Google Scholar 

  • Tommasi L, Gagliardo A, Andrew RJ, Vallortigara G (2003) Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. Eur J Neurosci 17:1695–1702

    Article  PubMed  Google Scholar 

  • Ulrich C, Prior H, Duka T, Leshchins’ka I, Valenti P, Güntürkün O, Lipp HP (1999) Left-hemispheric superiority for visuospatial orientation in homing pigeons. Behav Brain Res 104:169–178

    Article  PubMed  CAS  Google Scholar 

  • Underwood H, Steele CT, Zivkovic B (2001) Circadian organization and the role of the pineal in birds. Microsc Res Techniq 53:48–62

    Article  CAS  Google Scholar 

  • Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang 73:189–219

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633

    PubMed  Google Scholar 

  • Vallortigara G, Regolin L, Bortolomiol G, Tommasi L (1996) Lateral asymmetries due to preferences in eye use during visual discrimination learning in chicks. Behav Brain Res 74:135–143

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175

    Article  PubMed  CAS  Google Scholar 

  • Vargas JP, Petruso EJ, Bingman VP (2004) Hippocampal formation is required for geometric navigation in pigeons. Eur J Neurosci 20:1937–1944

    Article  PubMed  Google Scholar 

  • Vargas JP, Siegel JJ, Bingman VP (2006) The effects of a changing magnetic field on single-unit activity in the homing pigeon hippocampus. Brain Res Bull 70:158–164

    Article  PubMed  Google Scholar 

  • Visalberghi E, Alleva E (1975) Magnetic influences on pigeon homing. Biol Bull 125:246–256

    Google Scholar 

  • Visalberghi E, Foa A, Baldaccini NE, Alleva E (1978) New experiments on the homing ability of the rock pigeon. Monit Zool Ital (NS) 12:199–209

    Google Scholar 

  • Von Frisch K (1950) Die Sonne als Kompass im Leben der Bienen. Experientia 6:210–221

    Article  Google Scholar 

  • Vos HZN, Coemans MAJM, Nuboer JFW (1994) The photopic sensitivity of the yellow field of the pigeon’s retina to ultraviolet light. Vision Res 34(11):1419–1425

    Article  Google Scholar 

  • Vyssotski AL, Serkov AN, Itskov PM, Dell’omo G, Latanov AV, Wolfer DP, Lipp HP (2006) Miniature neurologgers for flying pigeons: multichannel EEG and action and field potentials in combination with GPS recording. J Neurophysiol 95:1263–1273

    Article  PubMed  Google Scholar 

  • Wada Y, Okano T, Adachi A, Ebihara S, Fukada Y (1998) Identification of rhodopsin in the pigeon deep brain. FEBS Lett 424:53–56

    Article  PubMed  CAS  Google Scholar 

  • Wagner G (1983) Natural geomagnetic anomalies and homing in pigeons. Comp Biochem Physiol 76A(4):691–700

    Article  Google Scholar 

  • Walcott C (2005) Multi-modal orientation cues in homing pigeons. Integr Comp Biol 45:574–581

    Article  Google Scholar 

  • Walcott C, Gould JL, Lednor AJ (1988) Homing of magnetized and demagnetized pigeons. J Exp Biol 134:27–41

    PubMed  CAS  Google Scholar 

  • Walker MM (1998) On a wing and a vector: a model for magnetic navigation by homing pigeons. J Theor Biol 192:341–349

    Article  PubMed  Google Scholar 

  • Wallenberg A (1898) Eine Verbindung caudaler Hirnteile der Taube mit dem Striatum. Neurologisches Zentralblatt 17:300–302

    Google Scholar 

  • Wallraff HG (2001) Navigation by homing pigeons: updated perspective. Ethol Ecol Evol 13:1–48

    Google Scholar 

  • Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer, Berlin

    Google Scholar 

  • Williams H, Crane LA, Hale TK, Esposito MA, Nottebohm F (1992) Right-side dominance for song control in the zebra finch. J Neurobiol 23:1006–1020

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W (1983a) Compass used by birds. Comp Biochem Physiol 76A(4):709–717

    Article  Google Scholar 

  • Wiltschko R (1983b) The ontogeny of orientation in young pigeons. Comp Biochem Physiol 76A(4):701–708

    Article  Google Scholar 

  • Wiltschko R (1986) The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? J Exp Biol 199:113–119

    Google Scholar 

  • Wiltschko R (1992) Das Verhalten verfrachteter Vögel. Vogelwarte 36:249–310

    Google Scholar 

  • Wiltschko R, Wiltschko W (1985) Pigeon homing: change in navigational strategy during ontogeny. Anim Behav 33:583–590

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (1989) Pigeon homing: olfactory orientation-a paradox. Behav Ecol Sociobiol 24:163–173

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65:257–272

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2006) Magnetoreception. BioEssays 28(2):157–168

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko R, Haugh C, Walker M, Wiltschko W (1998) Pigeon homing: sun compass use in the southern hemisphere. Behav Ecol Sociobiol 43:297–300

    Article  Google Scholar 

  • Wiltschko R, Walker M, Wiltschko W (2000) Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth? J Exp Biol 203:889–894

    PubMed  CAS  Google Scholar 

  • Wiltschko R, Schiffner I, Siegmund B (2007) Homing flights of pigeons over familiar terrain. Anim Behav 74:1229–1240

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2001a) Clock-shift experiments with homing pigeons: a compromise between solar and magnetic information? Behav Ecol Sociobiol 49:393–400

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2001b) The geomagnetic field and its role in directional orientation. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin

    Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Pysiol A 191:675–693

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148(1):S61–S76

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Keeton WT, Madden R (1983) Growing up in an altered magnetic field affects the initial orientation of young homing pigeons. Behav Ecol Sociobiol 12:135–142

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Walcott C (1987) Pigeon homing: different effects of olfactory deprivation in different countries. Behav Ecol Sociobiol 21:333–342

    Article  Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2006) Bird navigation: what type of information does the magnetite-based receptor provide? Proc R Soc B 273:2815–2820

    Article  PubMed  Google Scholar 

  • Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S (2001) Identification of the suprachiasmatic nucleus in birds. Am J Physiol Reg Integr Comp Physiol 280:R1185–R1189

    CAS  Google Scholar 

Download references

Acknowledgement

Thanks are due to Prof. Mike Mann (Omaha, Nebraska) for improving the style of the manuscript and for suggestions to improve the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Mehlhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehlhorn, J., Rehkämper, G. Neurobiology of the homing pigeon—a review. Naturwissenschaften 96, 1011–1025 (2009). https://doi.org/10.1007/s00114-009-0560-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0560-7

Keywords

Navigation