Skip to main content
Log in

Extrakorporale fokussierte Stoßwellentherapie zur Behandlung von Pseudarthrosen

Neue Erfahrungen mit einer alten Technologie

Extracorporal shock wave therapy for the treatment of pseudarthrosis

New experiences with an old technology

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In 5–10 % der Frakturfälle kommt es zu einer gestörten oder ausbleibenden Frakturheilung. Neben der operativen Therapie besteht die Möglichkeit der Stimulation der Frakturheilung durch die extrakorporale fokussierte Stoßwellentherapie (ESWT). Trotz guter klinischer Ergebnisse und geringer Komplikationsraten hat sich dieses Verfahren klinisch bis heute nicht etabliert. Ziel der Studie war die Untersuchung der Konsolidierungsrate von Pseudarthrosen (PA) und der Kostenersparnis nach ESWT.

Methode

Es wurden 39 Patienten mit 42 PA mittels ESWT behandelt (LithoSpaceOrtho, JenaMedtech). Die Nachuntersuchung erfolgte über einen Zeitraum von sechs Monaten mit radiologischer Beurteilung der Pseudarthrosenheilung. Die Beurteilung der Schmerzen erfolgte anhand der visuellen Analogskala (VAS). Wir konnten 39 PA nach 6 Wochen (93 %), 41 PA nach 3 Monaten (98 %) und 41 PA nach 6 Monaten (98 %) einschließen.

Ergebnisse

Nach 6 Wochen zeigten 13 % der behandelten Patienten eine knöcherne Konsolidierung der PA. Nach drei Monaten ergab sich in 61 % und nach sechs Monaten in 73 % eine knöcherne Heilung. Mit zunehmendem Frakturalter trat eine geringere Konsolidierungsrate auf. Es zeigte sich eine Schmerzabnahme bereits sechs Wochen nach ESWT. Die Gesamtkosten der ESWT bei allen 42 PA betrugen weniger als ein Viertel der Gesamtkosten einer operativen Therapie.

Schlussfolgerung

Im eigenen Vorgehen hat sich die ESWT in der PA Behandlung etabliert. Mit 73 % Konsolidierungsrate kann sich die ESWT, besonders unter Berücksichtigung der negativen Vorselektionierung des Patientenkollektivs (Frakturalter, Voroperationen) mit der operativen Erfolgsrate bei PA-Versorgung messen. Weitere prospektive, kontrollierte randomisierte Studien sind notwendig, um die Wirksamkeit der ESWT zur Behandlung von PA auf hohem Evidenzlevel zu belegen und herauszufinden, für welche PA eine ESWT ggf. auch Therapie der Wahl ist.

Abstract

Background

Between 5 and 10 % of all fractures show disturbed healing or nonunion formation. Extracorporeal shock wave therapy (ESWT) has been described as a non-surgical treatment option. Even though the outcome has shown promising results, the procedure is not commonly used in clinical practice. The purpose of this study was to analyze the union rate of pseudarthrosis and the cost savings after ESWT.

Methods

In this study 42 nonunions were treated with shock waves (LithSpaceOrtho, JenaMedtech). The follow up examinations were performed over a period of six months. Outcome measurement included radiological fracture union and pain (VAS). The study group contained 39 pseudarthrosis in the six-week follow-up (93 %), 41 after three months (98 %) and 41 after six months (98 %).

Results

After six weeks, 13 % of patients showed fracture union. After three months 61 % and after six months 73 % of the fractures were completely healed. The fracture healing was significantly lower in older nonunions. All patients presented significantly lower pain levels six weeks after ESWT. Shock wave treatment of all 42 pseudarthrosis made up less than one quarter of the overall operative costs.

Conclusion

We established the ESWT as an important treatment option for fracture nonunion in our clinic. Considering the selection of patients in this study with a high mean time from injury to ESWT and multiple prior operations, the fracture healing rate of 73 % after ESWT is comparable with operative healing rates of nonunions. Further prospective, randomized and controlled studies are needed to show the effectiveness of ESWT in the treatment of nonunions on a higher level of evidence and to identify pseudarthrosis that particularly responds to the EWST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Alvarez RG et al (2011) Extracorporeal shock wave treatment of non- or delayed union of proximal metatarsal fractures. Foot Ankle Int 32:746–754

    Article  PubMed  Google Scholar 

  2. Bellabarba C, Ricci WM, Bolhofner BR (2001) Results of indirect reduction and plating of femoral shaft nonunions after intramedullary nailing. J Orthop Trauma 15:254–263

    Article  CAS  PubMed  Google Scholar 

  3. Beutler S et al (1999) Extracorporeal shock wave therapy for delayed union of long bone fractures – preliminary results of a prospective cohort study. Unfallchirurg 102:839–847

    Article  CAS  PubMed  Google Scholar 

  4. Cacchio A et al (2009) Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 91:2589–2597

    Article  PubMed  Google Scholar 

  5. Dinah AF, Vickers RH (2007) Smoking increases failure rate of operation for established non-union of the scaphoid bone. Int Orthop 31:503–505

    Article  CAS  PubMed  Google Scholar 

  6. Elster EA et al (2010) Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma 24:133–141

    Article  PubMed  Google Scholar 

  7. Finkemeier CG, Chapman MW (2002) Treatment of femoral diaphyseal nonunions. Clin Orthop Relat Res 398:223–234

    Article  Google Scholar 

  8. Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R (2010) Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 92:846–854

    Article  PubMed  Google Scholar 

  9. Garcia P, Langer M, Raschke M (2015) The biological knife I – fracture healing and patient-dependent influencing factors. Z Orthop Unfall 153:433–440

    Article  CAS  PubMed  Google Scholar 

  10. Gerdesmeyer L, Maier M, Haake M, Schmitz C (2002) Physical-technical principles of extracorporeal shockwave therapy (ESWT). Orthopade 31:610–617

    Article  CAS  PubMed  Google Scholar 

  11. Haake M, Thon A, Bette M (2002) No influence of low-energy extracorporeal shock wave therapy (ESWT) on spinal nociceptive systems. J Orthop Sci 7:97–101

    Article  PubMed  Google Scholar 

  12. Haake M, Thon A, Bette M (2001) Absence of spinal response to extracorporeal shock waves on the endogenous opioid systems in the rat. Ultrasound Med Biol 27:279–284

    Article  CAS  PubMed  Google Scholar 

  13. Haist J (1995) Die Osteorestauration via Stoßwellenanwendung. Eine neue Möglichkeit zur Therapie der gestörten knöchernen Konsolidierung. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D (Hrsg) Die Stoßwelle. Forschung und Klinik. Attempto, Tübingen, S 157–161

    Google Scholar 

  14. Hak DJ, Lee SS, Goulet JA (2000) Success of exchange reamed intramedullary nailing for femoral shaft nonunion or delayed union. J Orthop Trauma 14:178–182

    Article  CAS  PubMed  Google Scholar 

  15. Hausdorf J et al (2008) Selective loss of unmyelinated nerve fibers after extracorporeal shockwave application to the musculoskeletal system. Neuroscience 155:138–144

    Article  CAS  PubMed  Google Scholar 

  16. Hausdorf J et al (2008) Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 1207:96–101

    Article  CAS  PubMed  Google Scholar 

  17. Lindstrom D et al (2008) Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial. Ann Surg 248:739–745

    Article  PubMed  Google Scholar 

  18. Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C (2003) Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 406:237–245

    Article  Google Scholar 

  19. Maier M et al (2002) Influence of extracorporeal shock-wave application on normal bone in an animal model in vivo. Scintigraphy, MRI and histopathology. J Bone Joint Surg Br 84:592–599

    Article  CAS  PubMed  Google Scholar 

  20. Melzack R (1994) Folk medicine and the sensory modulation of pain. In: Wall P, Melzack R (Hrsg) Textbook of pain. Churchill Livingstone, Edinburgh, S 1209–1217

    Google Scholar 

  21. Moller AM, Villebro N, Pedersen T, Tonnesen H (2002) Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. Lancet 359:114–117

    Article  PubMed  Google Scholar 

  22. Notarnicola A et al (2010) Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol 36:1306–1313

    Article  CAS  PubMed  Google Scholar 

  23. Ogden JA, Toth-Kischkat A, Schultheiss R (2001) Principles of shock wave therapy. Clin Orthop Relat Res 387:8–17

    Article  Google Scholar 

  24. Rijnberg WJ, van Linge B (1993) Central grafting for persistent nonunion of the tibia. A lateral approach to the tibia, creating a central compartment. J Bone Joint Surg Br 75:926–931

    CAS  PubMed  Google Scholar 

  25. Rompe JD, Rosendahl T, Schollner C, Theis C (2001) High-energy extracorporeal shock wave treatment of nonunions. Clin Orthop Relat Res 387:102–111

    Article  Google Scholar 

  26. Schaden W, Fischer A, Sailler A (2001) Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin Orthop Relat Res 387:90–94

    Article  Google Scholar 

  27. Simon JP, Stuyck J, Hoogmartens M, Fabry G (1992) Posterolateral bone grafting for nonunion of the tibia. Acta Orthop Belg 58:308–313

    CAS  PubMed  Google Scholar 

  28. Stojadinovic A et al (2011) Development of a prognostic naive bayesian classifier for successful treatment of nonunions. J Bone Joint Surg Am 93:187–194

    Article  PubMed  Google Scholar 

  29. Takahashi N, Wada Y, Ohtori S, Saisu T, Moriya H (2003) Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Auton Neurosci 107:81–84

    Article  CAS  PubMed  Google Scholar 

  30. Tischer T et al (2008) Dose-dependent new bone formation by extracorporeal shock wave application on the intact femur of rabbits. Eur Surg Res 41:44–53

    Article  CAS  PubMed  Google Scholar 

  31. Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop 15:181–184

    Article  CAS  PubMed  Google Scholar 

  32. Vogel J, Rompe JD, Hopf C, Heine J, Burger R (1997) High-energy extracorporeal shock-wave therapy (ESWT) in the treatment of pseudarthrosis. Z Orthop Ihre Grenzgeb 135:145–149

    Article  CAS  PubMed  Google Scholar 

  33. Vulpiani MC et al (2012) Effects of extracorporeal shock wave therapy on fracture nonunions. Am J Orthop 41:E122–E127

    PubMed  Google Scholar 

  34. Wang CJ, Chen HS, Chen CE, Yang KD (2001) Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 387:95–101

    Article  Google Scholar 

  35. Wang CJ, Huang HY, Pai CH (2002) Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg 41:16–22

    Article  CAS  PubMed  Google Scholar 

  36. Wang CJ, Wang FS, Yang KD (2008) Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg 128:879–884

    Article  PubMed  Google Scholar 

  37. Wang FS et al (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655

    Article  CAS  PubMed  Google Scholar 

  38. Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg Br 84:457–461

    Article  CAS  PubMed  Google Scholar 

  39. Wang FS et al (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32:387–396

    Article  CAS  PubMed  Google Scholar 

  40. Warren SB, Brooker AF Jr (1992) Intramedullary nailing of tibial nonunions. Clin Orthop Relat Res 285:236–243

    Google Scholar 

  41. Wiss DA, Stetson WB (1994) Nonunion of the tibia treated with a reamed intramedullary nail. J Orthop Trauma 8:189–194

    Article  CAS  PubMed  Google Scholar 

  42. Wu CC, Shih CH (1992) Treatment of 84 cases of femoral nonunion. Acta Orthop Scand 63:57–60

    Article  CAS  PubMed  Google Scholar 

  43. Xu ZH et al (2009) Extracorporeal shock wave treatment in nonunions of long bone fractures. Int Orthop 33:789–793

    Article  PubMed  Google Scholar 

  44. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Everding.

Ethics declarations

Interessenkonflikt

J. Everding, M. Freistühler, J. Stolberg-Stolberg, M.J. Raschke und P. Garcia geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Additional information

Redaktion

W. Mutschler, München

H. Polzer, München

B. Ockert, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everding, J., Freistühler, M., Stolberg-Stolberg, J. et al. Extrakorporale fokussierte Stoßwellentherapie zur Behandlung von Pseudarthrosen. Unfallchirurg 120, 969–978 (2017). https://doi.org/10.1007/s00113-016-0238-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0238-5

Schlüsselwörter

Keywords

Navigation