Skip to main content
Log in

Mechanism of efferocytosis in atherosclerosis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system’s involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Ley K, Miller YI, Hedrick CC (2011) Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 31(7):1506–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Golforoush P, Yellon DM, Davidson SM (2020) Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 115(6). https://doi.org/10.1007/s00395-020-00829-5

  3. Boada-Romero E et al (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 21(7):398–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rahman MS, Woollard K (2017) Atherosclerosis. Adv Exp Med Biol 1003:121–144

    Article  CAS  PubMed  Google Scholar 

  5. Schrijvers DM et al (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25(6):1256–1261

    Article  CAS  PubMed  Google Scholar 

  6. Penberthy KK, Lysiak JJ, Ravichandran KS (2018) RethinkingPhagocytes: Clues from the Retina and Testes. Trends Cell Biol 28(4):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evans AL et al (2017) Antagonistic coevolution of MER tyrosine kinase expression and function. Mol Biol Evol 34(7):1613–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857–860

    Article  CAS  PubMed  Google Scholar 

  9. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16(9):907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu J et al (2019) Efficient engulfment of necroptotic and pyroptotic cells by nonprofessional and professional phagocytes. Cell Discov 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morioka S, Maueroder C, Ravichandran KS (2019) Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50(5):1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medina CB, Ravichandran KS (2016) Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death Differ 23(6):979–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Medina CB et al (2020) Metabolites released from apoptotic cells act as tissue messengers. Nature 580(7801):130–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bournazou I et al (2009) Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 119(1):20–32

    CAS  PubMed  Google Scholar 

  15. Lee M et al (2018) Tissue-specific role of CX(3)CR1 expressing immune cells and their relationships with human disease. Immune Netw 18(1):e5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Truman LA et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026–5036

    Article  CAS  PubMed  Google Scholar 

  17. Lauber K et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730

    Article  CAS  PubMed  Google Scholar 

  18. Peter C et al (2012) Release of lysophospholipid “find-me” signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45(8):568–573

    Article  CAS  PubMed  Google Scholar 

  19. Apostolakis S, Spandidos D (2013) Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacol Sin 34(10):1251–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu Y et al (2015) Defective apical extrusion signaling contributes to aggressive tumor hallmarks. Elife 4:e04069

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matsumoto T, Kobayashi T, Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14(30):3209–3220

    Article  CAS  PubMed  Google Scholar 

  22. Ferrari D et al (2015) Purinergic signaling in atherosclerosis. Trends Mol Med 21(3):184–192

    Article  CAS  PubMed  Google Scholar 

  23. Zhao X, Kruzel M, Aronowski J (2021) Lactoferrin and hematoma detoxification after intracerebral hemorrhage. Biochem Cell Biol 99(1):97–101

    Article  CAS  PubMed  Google Scholar 

  24. Chen C et al (2023) The role of lactoferrin in atherosclerosis. Biometals 36(3):509–519

    Article  PubMed  Google Scholar 

  25. da Rocha GHO et al (2019) Control of expression and activity of peroxisome proliferated-activated receptor gamma by Annexin A1 on microglia during efferocytosis. Cell Biochem Funct 37(7):560–568

    Article  PubMed  Google Scholar 

  26. Li YZ et al (2022) Annexin A protein family in atherosclerosis. Clin Chim Acta 531:406–417

    Article  CAS  PubMed  Google Scholar 

  27. Frasch SC et al (2011) Signaling via macrophage G2A enhances efferocytosis of dying neutrophils by augmentation of Rac activity. J Biol Chem 286(14):12108–12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui X et al (2021) The G2A receptor deficiency aggravates atherosclerosis in rats by regulating macrophages and lipid metabolism. Front Physiol 12:659211

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barnawi J et al (2017) Reduced DNA methylation of sphingosine-1 phosphate receptor 5 in alveolar macrophages in COPD: a potential link to failed efferocytosis. Respirology 22(2):315–321

    Article  PubMed  Google Scholar 

  30. Birge RB et al (2016) Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ 23(6):962–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kojima Y et al (2019) Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 129(5):2164

    Article  PubMed  PubMed Central  Google Scholar 

  32. Khatana C et al (2020) Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev 2020:5245308

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tao H et al (2015) Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J Lipid Res 56(8):1449–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kojima Y et al (2016) CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536(7614):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caligiuri G (2020) CD31 as a therapeutic target in atherosclerosis. Circ Res 126(9):1178–1189

    Article  CAS  PubMed  Google Scholar 

  36. Manta CP et al (2022) Targeting of scavenger receptors stabilin-1 and stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating monocyte/macrophage suppression. Circulation 146(23):1783–1799

    Article  CAS  PubMed  Google Scholar 

  37. Lee W et al (2018) Macrophagic stabilin-1 restored disruption of vascular integrity caused by sepsis. Thromb Haemost 118(10):1776–1789

    Article  PubMed  Google Scholar 

  38. Foks AC et al (2016) Blockade of Tim-1 and Tim-4 enhances atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 36(3):456–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foks AC et al (2013) T-cell immunoglobulin and mucin domain 3 acts as a negative regulator of atherosclerosis. Arterioscler Thromb Vasc Biol 33(11):2558–2565

    Article  CAS  PubMed  Google Scholar 

  40. Mueller PA et al (2018) Deletion of macrophage low-density lipoprotein receptor-related protein 1 (LRP1) accelerates atherosclerosis regression and increases C-C chemokine receptor type 7 (CCR7) expression in plaque macrophages. Circulation 138(17):1850–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai B, Kasikara C (2020) TAM receptors and their ligand-mediated activation: role in atherosclerosis. Int Rev Cell Mol Biol 357:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian K et al (2020) CD36 in atherosclerosis: pathophysiological mechanisms and therapeutic implications. Curr Atheroscler Rep 22(10):59

    Article  CAS  PubMed  Google Scholar 

  43. Hurtado B et al (2011) Expression of the vitamin K-dependent proteins GAS6 and protein S and the TAM receptor tyrosine kinases in human atherosclerotic carotid plaques. Thromb Haemost 105(5):873–882

    Article  CAS  PubMed  Google Scholar 

  44. Ait-Oufella H et al (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115(16):2168–2177

    Article  CAS  PubMed  Google Scholar 

  45. Bhatia VK et al (2007) Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol 170(1):416–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heo KS et al (2014) ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis. Circulation 130(2):180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McShane L et al (2019) TAM receptors in cardiovascular disease. Cardiovasc Res 115(8):1286–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanayama R et al (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187

    Article  CAS  PubMed  Google Scholar 

  49. Maiti SN et al (2008) Beta-2-glycoprotein 1-dependent macrophage uptake of apoptotic cells. Binding to lipoprotein receptor-related protein receptor family members. J Biol Chem 283(7):3761–6

    Article  CAS  PubMed  Google Scholar 

  50. Nakaya M et al (2008) Spatiotemporal activation of Rac1 for engulfment of apoptotic cells. Proc Natl Acad Sci USA 105(27):9198–9203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barkal AA et al (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572(7769):392–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oldenborg PA et al (2000) Role of CD47 as a marker of self on red blood cells. Science 288(5473):2051–2054

    Article  CAS  PubMed  Google Scholar 

  53. Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17(23):6932–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yurdagul A Jr et al (2020) Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab 31(3):518–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim SY et al (2017) Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. PLoS ONE 12(4):e0174603

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yurdagul A Jr (2021) Metabolic consequences of efferocytosis and its impact on atherosclerosis. Immunometabolism 3(2). https://doi.org/10.20900/immunometab20210017

  57. Kumar D, Pandit R, Yurdagul A Jr (2023) Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. Immunometabolism (Cobham) 5(1):e00017

    Article  PubMed  Google Scholar 

  58. Cai B et al (2016) MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc Natl Acad Sci USA 113(23):6526–6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yurdagul A Jr et al (2021) ODC (ornithine decarboxylase)-dependent putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arterioscler Thromb Vasc Biol 41(3):e144–e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thorp E et al (2011) Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cdelta, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 286(38):33335–33344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cai B et al (2017) MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J Clin Invest 127(2):564–568

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yancey PG et al (2010) Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol 30(4):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yancey PG et al (2011) Low-density lipoprotein receptor-related protein 1 prevents early atherosclerosis by limiting lesional apoptosis and inflammatory Ly-6Chigh monocytosis: evidence that the effects are not apolipoprotein E dependent. Circulation 124(4):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen J et al (2021) The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Front Cardiovasc Med 8:682389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mueller PA et al (2022) Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) is required for the effect of CD47 blockade on efferocytosis and atherogenesis-brief report. Arterioscler Thromb Vasc Biol 42(1):e1–e9

    Article  CAS  PubMed  Google Scholar 

  66. Huang L et al (2019) SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569(7757):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu P et al (2018) PDZK1 in leukocytes protects against cellular apoptosis and necrotic core development in atherosclerotic plaques in high fat diet fed ldl receptor deficient mice. Atherosclerosis 276:171–181

    Article  CAS  PubMed  Google Scholar 

  68. Saddar S et al (2013) Scavenger receptor class B type I is a plasma membrane cholesterol sensor. Circ Res 112(1):140–151

    Article  CAS  PubMed  Google Scholar 

  69. Tajbakhsh A et al (2018) Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther 188:12–25

    Article  CAS  PubMed  Google Scholar 

  70. Henson PM (2017) Cell removal: efferocytosis. Annu Rev Cell Dev Biol 33:127–144

    Article  CAS  PubMed  Google Scholar 

  71. Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50

    Article  CAS  PubMed  Google Scholar 

  72. Kumar S et al (2019) Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 114:76–92

    Article  CAS  PubMed  Google Scholar 

  73. Sallam T, Sandhu J, Tontonoz P (2018) Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 122(1):155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ye ZM et al (2019) LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis 10(2):138

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang P (2014) MFG-E8 and inflammation. Springer, Netherlands

    Book  Google Scholar 

  76. Toth B et al (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182(4):2084–2092

    Article  CAS  PubMed  Google Scholar 

  77. Roy P, Orecchioni M, Ley K (2022) How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 22(4):251–265

    Article  CAS  PubMed  Google Scholar 

  78. Chang MK et al (1999) Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 96(11):6353–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Polykratis A et al (2012) Conditional targeting of tumor necrosis factor receptor-associated factor 6 reveals opposing functions of Toll-like receptor signaling in endothelial and myeloid cells in a mouse model of atherosclerosis. Circulation 126(14):1739–1751

    Article  CAS  PubMed  Google Scholar 

  80. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  81. Shapouri-Moghaddam A et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233(9):6425–6440

    Article  CAS  PubMed  Google Scholar 

  82. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma X (2001) TNF-alpha and IL-12: a balancing act in macrophage functioning. Microbes Infect 3(2):121–129

    Article  CAS  PubMed  Google Scholar 

  84. Xie Y et al (2022) Novel insight on the role of macrophages in atherosclerosis: focus on polarization, apoptosis and efferocytosis. Int Immunopharmacol 113(Pt A):109260

    Article  CAS  PubMed  Google Scholar 

  85. Ji X et al (2020) Sphingosine 1-phosphate/microRNA-1249-5p/MCP-1 axis is involved in macrophage-associated inflammation in fatty liver injury in mice. Eur J Immunol 50(11):1746–1756

    Article  CAS  PubMed  Google Scholar 

  86. Doran AC et al (2017) CAMKIIgamma suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J Clin Invest 127(11):4075–4089

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brophy ML et al (2019) Myeloid-specific deletion of epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ Res 124(4):e6–e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cui D et al (2007) Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J Leukoc Biol 82(5):1040–1050

    Article  CAS  PubMed  Google Scholar 

  89. Viaud M et al (2018) Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ Res 122(10):1369–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cai B et al (2018) MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci Signal 11(549). https://doi.org/10.20900/immunometab20210017

  91. Morioka S et al (2018) Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563(7733):714–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wei Y et al (2015) Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler Thromb Vasc Biol 35(4):796–803

    Article  CAS  PubMed  Google Scholar 

  93. Simion V et al (2020) A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun 11(1):6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Y et al (2021) Guanxinkang decoction attenuates the inflammation in atherosclerosis by regulating efferocytosis and MAPKs signaling pathway in LDLR(-/-) mice and RAW264.7 cells. Front Pharmacol 12:731769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Du X et al (2017) Isoflurane promotes phagocytosis of apoptotic neutrophils through AMPK-mediated ADAM17/Mer signaling. PLoS ONE 12(7):e0180213

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bories G et al (2013) Liver X receptor activation stimulates iron export in human alternative macrophages. Circ Res 113(11):1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Engelbertsen D et al (2019) Increased lymphocyte activation and atherosclerosis in CD47-deficient mice. Sci Rep 9(1):10608

    Article  PubMed  PubMed Central  Google Scholar 

  98. Engelen SE et al (2022) Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat Rev Cardiol 19(8):522–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Scientific Research Project of Hunan Provincial Department of Education (23A0338) and the Project of the Hunan Provincial Health Committee (D202302048902) and the College Student Innovation and Entrepreneurship Training Program of Hunan Province (S202210555279, S202310555323, S202310555104, and S202310555321), University of South China, China.

Author information

Authors and Affiliations

Authors

Contributions

Li-Xia Shu designed the review, prepared the figures, and wrote the review. Xin Guo prepared the table, consulted the literature, and co-wrote the review. Liu-li Cao revised the review. Zong-Bao Wang and Shu-Zhi Wang supervised the project, provided scientific direction, and revised the review.

Corresponding author

Correspondence to Shu-Zhi Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, LX., Cao, Ll., Guo, X. et al. Mechanism of efferocytosis in atherosclerosis. J Mol Med (2024). https://doi.org/10.1007/s00109-024-02439-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00109-024-02439-3

Keywords

Navigation