Skip to main content
Log in

Nischarin expression may have differing roles in male and female melanoma patients

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Due to the development of resistance to previously effective therapies, there is a constant need for novel treatment modalities for metastatic melanoma. Nischarin (NISCH) is a druggable scaffolding protein reported as a tumor suppressor and a positive prognostic marker in breast and ovarian cancers through regulation of cancer cell survival, motility and invasion. The aim of this study was to examine the expression and potential role of nischarin in melanoma. We found that nischarin expression was decreased in melanoma tissues compared to the uninvolved skin, and this was attributed to the presence of microdeletions and hyper-methylation of the NISCH promoter in the tumor tissue. In addition to the previously reported cytoplasmic and membranous localization, we observed nischarin in the nuclei in melanoma patients’ tissues. NISCH expression in primary melanoma had favorable prognostic value for female patients, but, unexpectedly, high NISCH expression predicted worse prognosis for males. Gene set enrichment analysis suggested significant sex-related disparities in predicted association of NISCH with several signaling pathways, as well as with different tumor immune infiltrate composition in male and female patients. Taken together, our results imply that nischarin may have a role in melanoma progression, but that fine-tuning of the pathways it regulates is sex-dependent.

Key messages

  • Nischarin is a tumor suppressor whose role has not been investigated in melanoma.

  • Nischarin expression was downregulated in melanoma tissue compared to the normal skin.

  • Nischarin had the opposite prognostic value in male and female melanoma patients.

  • Nischarin association with signaling pathways differed in females and males. Our findings challenge the current view of nischarin as a universal tumor suppressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets analyzed during the current study are available at the following web links: (1) NCBI GEO repository: GSE3189, GSE46517, GSE86355; (2) Broad Institute GDAC Firehose; (3) cBioPortal: TCGA SKCM, DFCI dataset; (4) The Human Protein Atlas: skin, melanoma samples; (5) Mexpress.

Abbreviations

ACTB:

Beta actin

CNA:

Copy-number alteration

DFCI:

Dana-Farber Cancer Institute

FDA:

Food and Drug Administration

FDR:

False discovery rate

FFPE:

Formalin-fixed and paraffin-embedded

GEO:

Gene Expression Omnibus

GSEA:

Gene set enrichment analysis

H&E :

Hematoxylin and eosin

HPA:

Human Protein Atlas

IORS:

Institute for Oncology and Radiology of Serbia

IR1:

Imidazoline receptor 1

IRAS:

Imidazoline receptor antisera selected

LRR:

Leucine-rich repeat

LOH:

Loss of heterozygosity

MSP:

Methylation specific PCR

NCBI:

National Center for Biotechnology Information

NER:

Nucleotide excision repair

NES:

Normalized enrichment score

NISCH:

Nischarin

SKCM:

Skin cutaneous melanoma

TCA:

Tricarboxylic acid

TCGA:

The Cancer Genome Atlas

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Ugurel S, Ro J, Ascierto PA et al (2020) Survival of patients with advanced metastatic melanoma : The impact of MAP kinase pathway inhibition and immune checkpoint inhibition - Update 2019. Eur J Cancer 130:126–138. https://doi.org/10.1016/j.ejca.2020.02.021

    Article  CAS  PubMed  Google Scholar 

  4. Mukherjee N, Schwan JV, Fujita M et al (2015) Alternative Treatments for Melanoma: Targeting BCL-2 Family Members to De-Bulk and Kill Cancer Stem Cells. J Invest Dermatol 135:2155–2161. https://doi.org/10.1038/jid.2015.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kandolf Sekulovic L, Peris K, Hauschild A et al (2017) More than 5000 patients with metastatic melanoma in Europe per year do not have access to recommended first-line innovative treatments. Eur J Cancer 75:313–322. https://doi.org/10.1016/j.ejca.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  6. Piletz JE, Ivanov TR, Sharp JD et al (2000) Imidazoline receptor antisera-selected (IRAS) cDNA: Cloning and characterization. DNA Cell Biol 19:319–329. https://doi.org/10.1089/10445490050043290

    Article  CAS  PubMed  Google Scholar 

  7. Alahari SK, Lee JW, Juliano RL (2000) Nischarin, a novel protein that interacts with the integrin α5 subunit and inhibits cell migration. J Cell Biol 151:1141–1154. https://doi.org/10.1083/jcb.151.6.1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bousquet P, Hudson A, García-Sevilla JA, Li JX (2020) Imidazoline receptor system: The past, the present, and the future. Pharmacol Rev 72:50–79. https://doi.org/10.1124/pr.118.016311

    Article  CAS  PubMed  Google Scholar 

  9. Uhlén M, Fagerberg L, Hallström BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

  10. Li J, He X, Dong R et al (2015) Frequent loss of NISCH promotes tumor proliferation and invasion in ovarian cancer via inhibiting the FAK signal pathway. Mol Cancer Ther 14:1202–1212. https://doi.org/10.1158/1535-7163.mct-14-0911

    Article  CAS  PubMed  Google Scholar 

  11. Maziveyi M, Alahari SK (2015) Breast cancer tumor suppressors: A special emphasis on novel protein nischarin. Cancer Res 75:4252–4259. https://doi.org/10.1158/0008-5472.CAN-15-1395

    Article  CAS  PubMed  Google Scholar 

  12. Loginov VI, Bazov IV, Khodyrev DS et al (2008) Human chromosome 3P regions of putative tumor-suppressor genes in renal, breast, and ovarian carcinomas. Russ J Genet 44:209–214. https://doi.org/10.1134/s1022795408020142

    Article  CAS  Google Scholar 

  13. Ding Y, Zhang R, Zhang K et al (2013) Nischarin Is Differentially Expressed in Rat Brain and Regulates Neuronal Migration. PLoS ONE 8:3–9. https://doi.org/10.1371/journal.pone.0054563

    Article  CAS  Google Scholar 

  14. Baranwal S, Wang Y, Rathinam R et al (2011) Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst 103:1513–1528. https://doi.org/10.1093/jnci/djr350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maziveyi M, Dong S, Baranwal S, Alahari SK (2018) Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Mol Cancer 17:1–11. https://doi.org/10.1186/s12943-018-0764-6

    Article  CAS  Google Scholar 

  16. Dong S, Baranwal S, Garcia A et al (2017) Nischarin inhibition alters energy metabolism by activating AMP-activated protein kinase. J Biol Chem 292:16833–16846. https://doi.org/10.1074/jbc.M117.784256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talantov D, Mazumder A, Yu JX et al (2005) Novel Genes Associated with Malignant Melanoma but not Benign Melanocytic Lesions. Clin Cancer Res 11:7234–7242. https://doi.org/10.1158/1078-0432.CCR-05-0683

    Article  CAS  PubMed  Google Scholar 

  18. Kabbarah O, Nogueira C, Feng B et al (2010) Integrative genome comparison of primary and metastatic melanomas. PLoS One 5:e10770. https://doi.org/10.1371/journal.pone.0010770

  19. Liu D, Schilling B, Liu D et al (2019) Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med 25:1916–1927. https://doi.org/10.1038/s41591-019-0654-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wouters J, Vizoso M, Martinez-Cardus A et al (2017) Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Med 15:101. https://doi.org/10.1186/s12916-017-0851-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Özdemir BC, Dotto GP (2019) Sex Hormones and Anticancer Immunity. Clin Cancer Res 25:4603–4610. https://doi.org/10.1158/1078-0432.CCR-19-0137

    Article  PubMed  Google Scholar 

  22. Ye Y, Jing Y, Li L et al (2020) Sex-associated molecular differences for cancer immunotherapy. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-15679-x

    Article  CAS  Google Scholar 

  23. Selitsky SR, Mose LE, Smith CC et al (2019) Prognostic value of B cells in cutaneous melanoma. Genome Med 11:1–11. https://doi.org/10.1186/s13073-019-0647-5

    Article  CAS  Google Scholar 

  24. Okpechi SC, Yousefi H, Nguyen K et al (2022) Role of Nischarin in the pathology of diseases: a special emphasis on breast cancer. Oncogene 41:1079–1086. https://doi.org/10.1038/s41388-021-02150-4

    Article  CAS  PubMed  Google Scholar 

  25. Botti G, Cerrone M, Scognamiglio G et al (2013) Microenvironment and tumor progression of melanoma: New therapeutic prospectives. J Immunotoxicol 10:235–252. https://doi.org/10.3109/1547691X.2012.723767

    Article  CAS  PubMed  Google Scholar 

  26. Sullivan RJ, Flaherty KT (2013) Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer 49:1297–1304. https://doi.org/10.1016/j.ejca.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  27. Ding Y, Li Y, Lu L et al (2015) Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity. PLoS One 10:e0144948. https://doi.org/10.1371/journal.pone.0144948

  28. Yaar M, Park HY (2012) Melanocytes: A window into the nervous system. J Invest Dermatol 132:835–845. https://doi.org/10.1038/jid.2011.386

    Article  CAS  PubMed  Google Scholar 

  29. Hoque MO, Kim MS, Ostrow KL et al (2008) Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res 68:2661–2670. https://doi.org/10.1158/0008-5472.CAN-07-5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. La Torre A, Muscarella LA, Parrella P et al (2012) Aberrant genes promoter methylation in neural crest-derived tumors. Int J Biol Markers 27. https://doi.org/10.5301/JBM.2012.9766

  31. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gupta S, Artomov M, Goggins W et al (2015) Gender Disparity and Mutation Burden in Metastatic Melanoma. JNCI J Natl Cancer Inst 107:221. https://doi.org/10.1093/JNCI/DJV221

    Article  Google Scholar 

  33. Li CH, Haider S, Shiah YJ et al (2018) Sex Differences in Cancer Driver Genes and Biomarkers. Cancer Res 78:5527–5537. https://doi.org/10.1158/0008-5472.CAN-18-0362

    Article  CAS  PubMed  Google Scholar 

  34. Joosse A, Collette S, Suciu S et al (2012) Superior outcome of women with stage I/II cutaneous melanoma: Pooled analysis of four European organisation for research and treatment of cancer phase III trials. J Clin Oncol 30:2240–2247. https://doi.org/10.1200/JCO.2011.38.0584

    Article  PubMed  Google Scholar 

  35. Lasithiotakis K, Leiter U, Meier F et al (2008) Age and gender are significant independent predictors of survival in primary cutaneous melanoma. Cancer 112:1795–1804. https://doi.org/10.1002/cncr.23359

    Article  PubMed  Google Scholar 

  36. de Vries E, Nijsten TEC, Visser O et al (2008) Superior survival of females among 10 538 Dutch melanoma patients is independent of Breslow thickness, histologic type and tumor site. Ann Oncol 19:583–589. https://doi.org/10.1093/annonc/mdm498

    Article  PubMed  Google Scholar 

  37. Dika E, Patrizi A, Lambertini M (2019) Estrogen Receptors and Melanoma: A Review. Cells 8:1463. https://doi.org/10.3390/CELLS8111463

  38. Dong S, Blüher M, Zhang Y et al (2019) Development of insulin resistance in Nischarin mutant female mice. Int J Obes 43:1046–1057. https://doi.org/10.1038/s41366-018-0241-8

    Article  CAS  Google Scholar 

  39. Nguyen TH, Yousefi H, Okpechi SC et al (2022) Nischarin Deletion Reduces Oxidative Metabolism and Overall ATP : A Study Using a Novel NISCH ∆ 5–6 Knockout Mouse Model. Int J Mol Sci 23:1374. https://doi.org/10.3390/IJMS23031374/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ciołczyk-Wierzbicka D, Gil D, Zarzycka M, Laidler P (2020) mTOR inhibitor everolimus reduces invasiveness of melanoma cells. Hum Cell 33:88–97. https://doi.org/10.1007/s13577-019-00270-4

    Article  CAS  PubMed  Google Scholar 

  41. Damsky W, Micevic G, Meeth K et al (2015) mTORC1 activation blocks BrafV600E -induced growth-arrest, but is insufficient for melanoma formation. Cancer Cell 27:41–56. https://doi.org/10.1016/j.ccell.2014.11.014.mTORC1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lizcano JM, Göransson O, Toth R et al (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. Embo J 23. https://doi.org/10.1038/sj.emboj.7600110

  43. Jain P, Baranwal S, Dong S et al (2013) Integrin-binding protein nischarin interacts with tumor suppressor liver kinase B1 (LKB1) to regulate cell migration of breast epithelial cells. J Biol Chem 288:15495–15509. https://doi.org/10.1074/jbc.M112.418103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haupt S, Caramia F, Klein SL et al (2021) Sex disparities matter in cancer development and therapy. Nat Rev Cancer 21:393. https://doi.org/10.1038/S41568-021-00348-Y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kusakabe M, Onishi Y, Tada H et al (2019) Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ 41:1–6. https://doi.org/10.1186/S41021-019-0119-6/FIGURES/3

    Article  Google Scholar 

  46. Ji Y, Hao H, Reynolds K et al (2019) Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 8:1173. https://doi.org/10.3390/CELLS8101173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chien AJ, Moore EC, Lonsdorf AS et al (2009) Activated Wnt/ß-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci USA 106:1193–1198. https://doi.org/10.1073/PNAS.0811902106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chien AJ, Haydu LE, Biechele TL et al (2014) Targeted BRAF Inhibition Impacts Survival in Melanoma Patients with High Levels of Wnt/β-Catenin Signaling. PLoS One 9:e94748. https://doi.org/10.1371/JOURNAL.PONE.0094748

  49. Conrad WH, Swift RD, Biechele TL et al (2012) Regulating the response to targeted MEK inhibition in melanoma. Cell Cycle 11:3724–3730. https://doi.org/10.4161/CC.21645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–235. https://doi.org/10.1038/NATURE14404

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Xiang Y, Li F et al (2019) WNT/β-catenin signaling pathway regulating T cell-inflammation in the tumor microenvironment. Front Immunol 10:2293. https://doi.org/10.3389/FIMMU.2019.02293/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The results shown here are in part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

This study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Agreement No. 451-03-68/2022-14/200043 and 451-03-68/2022-14/200015). JG is supported by Horizon 2020 MSC grant agreement No. 891135.

Author information

Authors and Affiliations

Authors

Contributions

Marija Ostojić, Marko Jevrić, Tatjana Srdić-Rajić and Jelena Grahovac contributed to the study conception and design. Material preparation, data collection and analysis were performed by Marija Ostojić, Marko Jevrić, Olivera Mitrović-Ajtić, Kristina Živić, Miljana Tanić, Milena Čavić, and Jelena Grahovac. Tatjana Srdić-Rajić and Jelena Grahovac secured the acquisition of funds for the study. The first draft of the manuscript was written by Marija Ostojić and Jelena Grahovac, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tatjana Srdić-Rajić or Jelena Grahovac.

Ethics declarations

Ethics approval

The study was approved by the Ethics Committee of the Institute for Oncology and Radiology of Serbia (Approval No5549-01, from 11.12.2017) and was performed in accordance with the Helsinki Declaration of 1975, as revised in 2013.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostojić, M., Jevrić, M., Mitrović-Ajtić, O. et al. Nischarin expression may have differing roles in male and female melanoma patients. J Mol Med 101, 1001–1014 (2023). https://doi.org/10.1007/s00109-023-02339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02339-y

Keywords

Navigation