Skip to main content
Log in

LncRNA GATA3-AS1 promoted invasion and migration in human endometrial carcinoma by regulating the miR-361/ARRB2 axis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2022

A Correction to this article was published on 26 August 2022

This article has been updated

Abstract

Endometrial carcinoma (EC) is a kind of fatal female malignancy. lncRNA GATA3-AS1 has been identified as an oncogene in various cancers. However, the functions and mechanisms of GATA3-AS1 in EC remain to be explored. Human EC tissues and four EC cell lines were used. Western blotting and quantitative real-time PCR (qRT-PCR) were used to evaluate the expression of GATA3-AS1, miR-361, and ARRB2. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the interaction among GATA3-AS1, miR-361, and ARRB2. Flow cytometry, colony formation assay, scratch assay, and transwell assay were used to examine the cell apoptosis, proliferation, migration, and invasion of EC cells, respectively. In vivo tumor growth was monitored in nude mice. GATA3-AS1 and ARRB2 were upregulated while miR-361 was downregulated in human EC tissues and EC cells. GATA3-AS1 knockdown constrained cell proliferation, invasion, migration, and EMT while promoting the apoptosis of EC cells by upregulating miR-361. GATA3-AS1 negatively regulated miR-361 expression. ARRB2 was the direct target of miR-361 and could activate the Src/Akt pathway. In vivo, GATA3-AS1 knockdown suppressed tumor progression by upregulating the miR-361 expression. lncRNA GATA3-AS1 promoted EC invasion and migration by the miR-361/ARRB2 axis, which indicated that GATA3-AS1 might be a promising therapeutic option for advanced EC progression.

Key messages

  • GATA3-AS1 knockdown suppressed EC proliferation, invasion, and migration.

  • GATA3-AS1 directly inhibited miR-361 as a ceRNA.

  • MiR-361 knockdown reversed the tumor suppressive effect caused by GATA3-AS1 knockdown.

  • MiR-361 bound to ARRB2 directly and suppressed its expression.

  • The GATA3-AS1/miR-361/ARRB2 axis regulated EC cell proliferation, invasion, and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Change history

Abbreviations

EC:

Endometrial carcinoma

qRT-PCR:

Quantitative real-time PCR

RIP:

RNA immunoprecipitation

LncRNA:

Long non-coding RNA

HESC:

Human endometrial stromal cells

shRNA:

Short hairpin RNA

MOI:

Multiplicity of infection

PET:

Polyethylene terephthalate

IHC:

Immunohistochemistry

References

  1. McAlpine JN, Temkin SM, Mackay HJ (2016) Endometrial cancer: not your grandmother’s cancer. Cancer 122:2787–2798. https://doi.org/10.1002/cncr.30094

    Article  PubMed  Google Scholar 

  2. Braun MM, Overbeek-Wager EA, Grumbo RJ (2016) Diagnosis and management of endometrial cancer. Am Fam Physician 93:468–474

    PubMed  Google Scholar 

  3. Lee YC, Lheureux S, Oza AM (2017) Treatment strategies for endometrial cancer: current practice and perspective. Curr Opin Obstet Gynecol 29:47–58. https://doi.org/10.1097/GCO.0000000000000338

    Article  PubMed  Google Scholar 

  4. Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y et al (2020) Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer 19:22. https://doi.org/10.1186/s12943-020-1147-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li L, Chen P, Huang B, Cai P (2021) lncRNA DSCAM-AS1 facilitates the progression of endometrial cancer via miR-136-5p. Oncol Lett 22:825. https://doi.org/10.3892/ol.2021.13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA, Zhu J, Zhao K (2013) Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14:1190–1198. https://doi.org/10.1038/ni.2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibbons HR, Shaginurova G, Kim LC, Chapman N, Spurlock CF 3rd, Aune TM (2018) Divergent lncRNA GATA3-AS1 regulates GATA3 transcription in T-helper 2 cells. Front Immunol 9:2512. https://doi.org/10.3389/fimmu.2018.02512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Xu G, Li L (2021) LncRNA GATA3AS1miR30b5pTex10 axis modulates tumorigenesis in pancreatic cancer. Oncol Rep 45.  https://doi.org/10.3892/or.2021.8010

  9. Contreras-Espinosa L, Alcaraz N, De La Rosa-Velázquez IA, Díaz-Chávez J, Cabrera-Galeana P, Rebollar-Vega R, Reynoso-Noverón N, Maldonado-Martínez HA, González-Barrios R, Montiel-Manríquez R et al (2021) Transcriptome analysis identifies GATA3-AS1 as a long noncoding RNA associated with resistance to neoadjuvant chemotherapy in locally advanced breast cancer patients. The Journal of molecular diagnostics : JMD 23:1306–1323. https://doi.org/10.1016/j.jmoldx.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  10. Zhang M, Wang N, Song P, Fu Y, Ren Y, Li Z, Wang J (2020) LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif 53:e12855. https://doi.org/10.1111/cpr.12855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Wang P, Zhang L, Huang C, Gao J, Li Y, Yang B (2020) Identification of key genes and long noncoding RNA-associated competing endogenous RNA (ceRNA) networks in early-onset preeclampsia. Biomed Res Int 2020:1673486. https://doi.org/10.1155/2020/1673486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang GF, Wen LN (2020) LncRNA SNHG14 promotes proliferation of endometrial cancer through regulating microRNA-655-3p. Eur Rev Med Pharmacol Sci 24:10410–10418. https://doi.org/10.26355/eurrev_202010_23391

    Article  PubMed  Google Scholar 

  14. Lin S, Zhao M, Lv Y, Mao G, Ding S, Peng F (2021) The lncRNA GATA3-AS1/miR-495-3p/CENPU axis predicts poor prognosis of breast cancer via the PLK1 signaling pathway. Aging 13. https://doi.org/10.18632/aging.202909

  15. Ma F, Zhang L, Ma L, Zhang Y, Zhang J, Guo B (2017) MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1. J Exp Clin Cancer Res 36:158. https://doi.org/10.1186/s13046-017-0630-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang K, Qi XJ, Liu HZ, Su H (2018) MiR-361 inhibits osteosarcoma cell lines invasion and proliferation by targeting FKBP14. Eur Rev Med Pharmacol Sci 22:79–86. https://doi.org/10.26355/eurrev_201801_14103

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Wei C, Li J, Liu J, Qu J (2017) MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1. Oncol Rep 37:1849–1856. https://doi.org/10.3892/or.2017.5406

    Article  CAS  PubMed  Google Scholar 

  18. Ihira K, Dong P, Xiong Y, Watari H, Konno Y, Hanley SJ, Noguchi M, Hirata N, Suizu F, Yamada T et al (2017) EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 8:13509–13520. https://doi.org/10.18632/oncotarget.14586

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong P, Xiong Y, Yue J, Xu D, Ihira K, Konno Y, Kobayashi N, Todo Y, Watari H (2019) Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J Exp Clin Cancer Res 38:295. https://doi.org/10.1186/s13046-019-1306-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu B, Ren A, Tian Y, Huang R (2020) Hsa_circ_0075960 serves as a sponge for miR-361-3p/SH2B1 in endometrial carcinoma. Technol Cancer Res Treat 19:1533033820983079. https://doi.org/10.1177/1533033820983079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen J, Huang X, Wang W, Xie H, Li J, Hu Z, Zheng Z, Li H, Teng L (2018) LncRNA CDKN2BAS predicts poor prognosis in patients with hepatocellular carcinoma and promotes metastasis via the miR-153-5p/ARHGAP18 signaling axis. Aging 10:3371–3381. https://doi.org/10.18632/aging.101645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I (2005) Endometrial cancer. Lancet (London, England) 366:491–505. https://doi.org/10.1016/s0140-6736(05)67063-8

    Article  Google Scholar 

  23. Piulats JM, Guerra E, Gil-Martín M, Roman-Canal B, Gatius S, Sanz-Pamplona R, Velasco A, Vidal A, Matias-Guiu X (2017) Molecular approaches for classifying endometrial carcinoma. Gynecol Oncol 145:200–207. https://doi.org/10.1016/j.ygyno.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  24. Murali R, Soslow RA, Weigelt B (2014) Classification of endometrial carcinoma: more than two types. Lancet Oncol 15:e268-278. https://doi.org/10.1016/s1470-2045(13)70591-6

    Article  PubMed  Google Scholar 

  25. Ray M, Fleming G (2009) Management of advanced-stage and recurrent endometrial cancer. Semin Oncol 36:145–154. https://doi.org/10.1053/j.seminoncol.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  26. Luo X, Zhou N, Wang L, Zeng Q, Tang H (2019) Long noncoding RNA GATA3-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by suppression of PTEN, CDKN1A, and TP53. Can J Gastroenterol Hepatol 2019:1389653. https://doi.org/10.1155/2019/1389653

    Article  PubMed  PubMed Central  Google Scholar 

  27. Banyard J, Bielenberg DR (2015) The role of EMT and MET in cancer dissemination. Connect Tissue Res 56:403–413. https://doi.org/10.3109/03008207.2015.1060970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wen Q, Zhao L, Wang T, Lv N, Cheng X, Zhang G, Bai L (2019) LncRNA SNHG16 drives proliferation and invasion of papillary thyroid cancer through modulation of miR-497. Onco Targets Ther 12:699–708. https://doi.org/10.2147/OTT.S186923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Xu G, Li L (2021) LncRNA GATA3‑AS1‑miR‑30b‑5p‑Tex10 axis modulates tumorigenesis in pancreatic cancer. Oncol Rep 45. https://doi.org/10.3892/or.2021.8010

  30. Lin S, Zhao M, Lv Y, Mao G, Ding S, Peng F (2021) The lncRNA GATA3-AS1/miR-495-3p/CENPU axis predicts poor prognosis of breast cancer via the PLK1 signaling pathway. Aging 13:13663–13679. https://doi.org/10.18632/aging.202909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu D, Tao T, Xu B, Chen S, Liu C, Zhang L, Lu K, Huang Y, Jiang L, Zhang X et al (2014) MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6). Biochem Biophys Res Commun 445:151–156. https://doi.org/10.1016/j.bbrc.2014.01.140

    Article  CAS  PubMed  Google Scholar 

  32. Song Q, Ji Q, Li Q (2018) The role and mechanism of β-arrestins in cancer invasion and metastasis (Review). Int J Mol Med 41:631–639. https://doi.org/10.3892/ijmm.2017.3288

    Article  CAS  PubMed  Google Scholar 

  33. Hu Y, Wu AY, Xu C, Song KQ, Wang WJ, Yin X, Di W, Hong ZB, Qiu LH (2019) MicroRNA-449a inhibits tumor metastasis through AKT/ERK1/2 inactivation by targeting steroid receptor coactivator (SRC) in endometrial cancer. J Cancer 10:547–555. https://doi.org/10.7150/jca.27748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yonezawa Y, Nagashima Y, Sato H, Virgona N, Fukumoto K, Shirai S, Hagiwara H, Seki T, Ariga T, Senba H et al (2005) Contribution of the Src family of kinases to the appearance of malignant phenotypes in renal cancer cells. Mol Carcinog 43:188–197. https://doi.org/10.1002/mc.20109

    Article  CAS  PubMed  Google Scholar 

  35. Roelants C, Giacosa S, Pillet C, Bussat R, Champelovier P, Bastien O, Guyon L, Arnoux V, Cochet C, Filhol O (2018) Combined inhibition of PI3K and Src kinases demonstrates synergistic therapeutic efficacy in clear-cell renal carcinoma. Oncotarget 9:30066–30078. https://doi.org/10.18632/oncotarget.25700

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wan J, Qin J, Cao Q, Hu P, Zhong C, Tu C (2020) Hypoxia-induced PLOD2 regulates invasion and epithelial-mesenchymal transition in endometrial carcinoma cells. Genes & genomics 42:317–324. https://doi.org/10.1007/s13258-019-00901-y

    Article  CAS  Google Scholar 

  37. Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, Tienda SM, Chryplewicz A, Zhu AC, Yang Y et al (2018) m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 20:1074–1083. https://doi.org/10.1038/s41556-018-0174-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by DENG Gao-pi, Guangdong Provincial Traditional Chinese Medicine Heritage Studio (No.20195) and Sanming Project of Medicine in Shenzhen (No.SZZYSM202106003).

Author information

Authors and Affiliations

Authors

Contributions

Yu-xi Liu: writing—original draft preparation, supervision, conceptualization. Shuo Yuan: software, investigation. Xiao-jing Liu: data curation, software. Yan-xi Huang: visualization. Pin Qiu: data curation. Jie Gao: methodology, validation, writing—reviewing and editing. Gao-pi Deng: methodology, validation, writing—reviewing and editing.

Corresponding authors

Correspondence to Jie Gao or Gao-pi Deng.

Ethics declarations

Ethics approval and consent to participate

The tissues were harvested from the First Affiliated Hospital of Guangzhou University of Chinese Medicine during 2017–2018. The human and animal experimentations in this study were approved by the ethics committee of the First Affiliated Hospital of Guangzhou University of Chinese Medicine. All the related patients have signed informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie Gao and Gao-pi Deng are co-corresponding authors.

The original online version of this article was revised: Affiliation 4 is deleted as it is not affiliated to the last Author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yx., Yuan, S., Liu, Xj. et al. LncRNA GATA3-AS1 promoted invasion and migration in human endometrial carcinoma by regulating the miR-361/ARRB2 axis. J Mol Med 100, 1271–1286 (2022). https://doi.org/10.1007/s00109-022-02222-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02222-2

Keywords

Navigation