Skip to main content

Advertisement

Log in

The novel protein homeostatic modulator BTX306 is active in myeloma and overcomes bortezomib and lenalidomide resistance

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Small molecules targeting the cereblon-containing E3 ubiquitin ligase including thalidomide, lenalidomide, and pomalidomide modulate turnover of downstream client proteins and demonstrate pre-clinical and clinical anti-myeloma activity. Different drugs that engage with cereblon hold the potential of unique phenotypic effects, and we therefore studied the novel protein homeostatic modulator (PHM™) BTX306 with a unique thiophene-fused scaffold bearing a substituted phenylurea and glutarimide. This agent much more potently reduced human-derived myeloma cell line viability, with median inhibitory concentrations in the single nanomolar range versus micromolar values for lenalidomide or pomalidomide, and more potently activated caspases 3/8/9. While lenalidomide and pomalidomide induced greater degradation of Ikaros and Aiolos in myeloma cells, BTX306 more potently reduced levels of GSPT1, eRF1, CK1α, MCL-1, and c-MYC. Suppression of cereblon or overexpression of Aiolos or Ikaros induced relative resistance to BTX306, and this agent did not impact viability of murine hematopoietic cells in an in vivo model, demonstrating its specificity for human cereblon. Interestingly, BTX306 did show some reduced activity in lenalidomide-resistant cell line models but nonetheless retained its nanomolar potency in vitro, overcame bortezomib resistance, and was equipotent against otherwise isogenic cell line models with either wild-type or knockout TP53. Finally, BTX306 demonstrated strong activity against primary CD138-positive plasma cells, showed enhanced anti-proliferative activity in combination with bortezomib and dexamethasone, and was effective in an in vivo systemic model of multiple myeloma. Taken together, the data support further translational studies of BTX306 and its derivatives to the clinic for patients with relapsed and/or refractory myeloma.

Key messages

  • BTX306 has a unique thiophene-fused scaffold bearing phenylurea and glutarimide.

  • BTX306 is more potent against myeloma cells than lenalidomide or pomalidomide.

  • BTX306 overcomes myeloma cell resistance to lenalidomide or bortezomib in vitro.

  • BTX306 is active against primary myeloma cells, and shows efficacy in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CRBN:

Cereblon

GSPT1:

G to S phase transition 1

IKZF1:

Ikaros

IKZF3:

Aiolos

LEN:

Lenalidomide

MM:

Multiple myeloma

PHM:

Protein homeostatic modulator

POM:

Pomalidomide

RPPA:

Reverse phrase protein array

THAL:

Thalidomide

References

  1. Holstein SA, McCarthy PL (2017) Immunomodulatory drugs in multiple myeloma: mechanisms of action and clinical experience. Drugs 77(5):505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bianchi G, Anderson KC (2019) Contribution of inhibition of protein catabolism in myeloma. Cancer J 25(1):11–18

    Article  CAS  PubMed  Google Scholar 

  3. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350

    Article  CAS  PubMed  Google Scholar 

  4. Xin W, Xiaohua N, Peilin C, Xin C, Yaqiong S, Qihan W (2008) Primary function analysis of human mental retardation related gene CRBN. Mol Biol Rep 35(2):251–256

    Article  PubMed  CAS  Google Scholar 

  5. Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 26(6):775–780

    Article  CAS  PubMed  Google Scholar 

  6. Zhu YX, Braggio E, Shi CX, Kortuem KM, Bruins LA, Schmidt JE, Chang XB, Langlais P, Luo M, Jedlowski P, et al. (2014) Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood 124(4):536–545

  7. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X et al (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343(6168):301–305

    Article  PubMed  CAS  Google Scholar 

  8. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343(6168):305–309

    Article  CAS  PubMed  Google Scholar 

  9. Gandhi R, Kumar D, Burns EJ, Nadeau M, Dake B, Laroni A, Kozoriz D, Weiner HL, Quintana FJ (2010) Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat Immunol 11(9):846–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quintana FJ, Jin H, Burns EJ, Nadeau M, Yeste A, Kumar D, Rangachari M, Zhu C, Xiao S, Seavitt J et al (2012) Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol 13(8):770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cortés M, Georgopoulos K (2004) Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J Exp Med 199(2):209–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Matyskiela ME, Zhang W, Man HW, Muller G, Khambatta G, Baculi F, Hickman M, LeBrun L, Pagarigan B, Carmel G et al (2018) A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J Med Chem 61(2):535–542

    Article  CAS  PubMed  Google Scholar 

  13. Hansen JD, Condroski K, Correa M, Muller G, Man HW, Ruchelman A, Zhang W, Vocanson F, Crea T, Liu W et al (2018) Protein degradation via CRL4(CRBN) ubiquitin ligase: discovery and structure-activity relationships of novel glutarimide analogs that promote degradation of Aiolos and/or GSPT1. J Med Chem 61(2):492–503

    Article  CAS  PubMed  Google Scholar 

  14. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, Miller K, Fang W, Wang NY, Nguyen D, Houston J et al (2016) A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535(7611):252–257

    Article  CAS  PubMed  Google Scholar 

  15. Hoshino S, Miyazawa H, Enomoto T, Hanaoka F, Kikuchi Y, Kikuchi A, Ui M (1989) A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J 8(12):3807–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng T, Yamamoto A, Wilkins SE, Sokolova E, Yates LA, Münzel M, Singh P, Hopkinson RJ, Fischer R, Cockman ME et al (2014) Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol Cell 53(4):645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Orlowski RZ, Lonial S (2016) Integration of novel agents into the care of patients with multiple myeloma. Clin Cancer Res 22(22):5443–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chim CS, Kumar SK, Orlowski RZ, Cook G, Richardson PG, Gertz MA, Giralt S, Mateos MV, Leleu X, Anderson KC (2018) Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia 32(2):252–262

    Article  CAS  PubMed  Google Scholar 

  19. Kunacheewa C, Orlowski RZ (2019) New drugs in multiple myeloma. Annu Rev Med 70:521–547

    Article  CAS  PubMed  Google Scholar 

  20. Kortum KM, Mai EK, Hanafiah NH, Shi CX, Zhu YX, Bruins L et al (2016) Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 128(9):1226–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma W, Wang M, Wang ZQ, Sun L, Graber D, Matthews J, Champlin R, Yi Q, Orlowski RZ, Kwak LW et al (2010) Effect of long-term storage in TRIzol on microarray-based gene expression profiling. Cancer Epidemiol Biomark Prev 19(10):2445–2452

    Article  CAS  Google Scholar 

  22. Bjorklund CC, Ma W, Wang ZQ, Davis RE, Kuhn DJ, Kornblau SM, Wang M, Shah JJ, Orlowski RZ (2011) Evidence of a role for activation of Wnt/beta-catenin signaling in the resistance of plasma cells to lenalidomide. J Biol Chem 286(13):11009–11020

    Article  CAS  PubMed  Google Scholar 

  23. Bjorklund CC, Baladandayuthapani V, Lin HY, Jones RJ, Kuiatse I, Wang H, Yang J, Shah JJ, Thomas SK, Wang M et al (2014) Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications. Leukemia 28(2):373–383

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Lee HC, Shirazi F, Baladandayuthapani V, Lin H, Kuiatse I, Wang H, Jones RJ, Berkova Z, Singh RK et al (2018) Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 32(10):2224–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HC, Wang H, Baladandayuthapani V, Lin H, He J, Jones RJ, Kuiatse I, Gu D, Wang Z, Ma W et al (2017) RNA polymerase I inhibition with CX-5461 as a novel therapeutic strategy to target MYC in multiple myeloma. Br J Haematol 177(1):80–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kisselev L, Ehrenberg M, Frolova L (2003) Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J 22(2):175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lopez-Girona A, Heintel D, Zhang LH, Mendy D, Gaidarova S, Brady H, Bartlett JB, Schafer PH, Schreder M, Bolomsky A et al (2011) Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol 154(3):325–336

    Article  CAS  PubMed  Google Scholar 

  28. Gopalakrishnan R, Matta H, Tolani B, Triche T Jr, Chaudhary PM (2016) Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors. Oncogene 35(14):1797–1810

    Article  CAS  PubMed  Google Scholar 

  29. Affer M, Chesi M, Chen WG, Keats JJ, Demchenko YN, Roschke AV et al (2014) Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 28(8):1725–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Misund K, Keane N, Stein CK, Asmann YW, Day G, Welsh S, van Wier S, Riggs DL, Ahmann G, Chesi M et al (2019) MYC dysregulation in the progression of multiple myeloma. Leukemia 34(1):322–326

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lim SL, Damnernsawad A, Shyamsunder P, Chng WJ, Han BC, Xu L, Pan J, Pravin DP, Alkan S, Tyner JW et al (2019) Proteolysis targeting chimeric molecules as therapy for multiple myeloma: efficacy, biomarker and drug combinations. Haematologica 104(6):1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glitza IC, Lu G, Shah R, Bashir Q, Shah N, Champlin RE, Shah J, Orlowski RZ, Qazilbash MH (2015) Chromosome 8q24.1/c-MYC abnormality: a marker for high-risk myeloma. Leuk Lymphoma 56(3):602–607

    Article  CAS  PubMed  Google Scholar 

  33. Ichikawa D, Nakamura M, Murota W, Osawa S, Matsushita M, Yanagawa H, Hattori Y (2020) A phenylphthalimide derivative, TC11, induces apoptosis by degrading MCL1 in multiple myeloma cells. Biochem Biophys Res Commun 521(1):252–258

    Article  CAS  PubMed  Google Scholar 

  34. Kapanidou M, Curtis NL, Bolanos-Garcia VM (2017) Cdc20: at the crossroads between chromosome segregation and mitotic exit. Trends Biochem Sci 42(3):193–205

    Article  CAS  PubMed  Google Scholar 

  35. Gong JN, Khong T, Segal D, Yao Y, Riffkin CD, Garnier JM, Khaw SL, Lessene G, Spencer A, Herold MJ et al (2016) Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood 128(14):1834–1844

    Article  CAS  PubMed  Google Scholar 

  36. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G et al (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538(7626):477–482

    Article  PubMed  CAS  Google Scholar 

  37. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, Cidado J, Embrey KJ, Gangl E, Gibbons FD et al (2018) Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun 9(1):5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, Schuetz JD, Rehg JE, Opferman JT (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 27(12):1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thomas RL, Roberts DJ, Kubli DA, Lee Y, Quinsay MN, Owens JB, Fischer KM, Sussman MA, Miyamoto S, Gustafsson AB (2013) Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev 27(12):1365–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thomas RL, Gustafsson AB (2013) MCL1 is critical for mitochondrial function and autophagy in the heart. Autophagy 9(11):1902–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fink EC, McConkey M, Adams DN, Haldar SD, Kennedy JA, Guirguis AA, Udeshi ND, Mani DR, Chen M, Liddicoat B et al (2018) Crbn (I391V) is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 132(14):1535–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gemechu Y, Millrine D, Hashimoto S, Prakash J, Sanchenkova K, Metwally H, Gyanu P, Kang S, Kishimoto T (2018) Humanized cereblon mice revealed two distinct therapeutic pathways of immunomodulatory drugs. Proc Natl Acad Sci U S A 115(46):11802–11807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the MD Anderson Flow Cytometry, and the RPPA and Imaging Core Facilities, both supported by the Cancer Center Support Grant (P30 CA16672), and thank Dr. Janet E. Mertz and Tawin Lempridee from the University of Wisconsin School of Medicine and Public Health for having provided Ikaros and Aiolos expression plasmids.

Funding

This work was supported by funding from BioTheryX, Inc. Additional support came from the National Cancer Institute (R01s CA184464 and CA194264), the Leukemia & Lymphoma Society Specialized Center of Research (SCOR-12206-17), and the Dr. Mirian and Sheldon G. Adelson Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

JZ planned and conducted most of the experiments, analyzed the results, and drafted the manuscript. JZ and FS performed animal experiments. RJJ, HW, and IK provided cell lines. HW provided technical support in lentiviral transduction of myeloma cells. RS, LF, NR, PE, ET, DH, IL, BM, and AHC planned and conducted compound development and revised the manuscript. EEM and HCL revised the manuscript. RJJ and KWHC participated in the design and analysis of experiments and reviewed the data and the manuscript. FM, DIS, and RZO conceived of the line of investigation, designed the experiments, analyzed the results, and edited the manuscript.

Corresponding author

Correspondence to Robert Z. Orlowski.

Ethics declarations

Conflicts of interest

RS, LF, NR, PE, ET, IL, BM, AHC, KWHC, FM, and DIS are employees of BioTheryX, Inc., while the other authors have no financial conflicts of interest to declare with respect to BioTheryX, Inc.

EEM has received research support from Sanofi, Quest Diagnostics, Novartis, JW Pharma, and Merck, and consultant fees from Takeda, Celgene, Sanofi, Janssen, GSK, and Adaptive Biotechnologies. HCL has provided consultancy services to Amgen, Inc., Celgene, a wholly owned subsidiary of Bristol-Myers Squibb, GlaxoSmithKline, Janssen Pharmaceutical, Sanofi-Aventis, and Takeda Pharmaceutical, and has received research funding from Amgen, Inc., Celgene, a wholly owned subsidiary of Bristol-Myers Squibb, Daiichi Sankyo, GlaxoSmithKline, Janssen Pharmaceutical, and Takeda Pharmaceuticals. RZO declares laboratory research funding from BioTheryX, and clinical research funding from CARsgen Therapeutics, Celgene, Exelixis, Janssen Biotech, Sanofi-Aventis, Takeda Pharmaceuticals North America, Inc. Also, RZO has served on advisory boards for Amgen, Inc., Bristol-Myers Squibb, Celgene, EcoR1 Capital LLC, Forma Therapeutics, Genzyme, GSK Biologicals, Ionis Pharmaceuticals, Inc., Janssen Biotech, Juno Therapeutics, Kite Pharma, Legend Biotech USA, Molecular Partners, Regeneron Pharmaceuticals, Inc., Sanofi-Aventis, Servier, and Takeda Pharmaceuticals North America, Inc., and is a Founder of Asylia Therapeutics, Inc., with associated patents and an equity interest, though this technology does not bear on the current manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

(PDF 1703 kb)

Online Resource 2

(PDF 4830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Jones, R.J., Wang, H. et al. The novel protein homeostatic modulator BTX306 is active in myeloma and overcomes bortezomib and lenalidomide resistance. J Mol Med 98, 1161–1173 (2020). https://doi.org/10.1007/s00109-020-01943-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01943-6

Keywords

Navigation