Skip to main content

Advertisement

Log in

Spatial localization of endothelial cells in heterotypic spheroids influences Notch signaling

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cell-based therapeutic approaches are an exciting strategy to replenish compromised endothelial cell (EC) populations that contribute to impaired vasculogenesis. Co-cultures of ECs and mesenchymal stromal cells (MSCs) can enhance neovascularization over ECs alone, but the efficacy of cells is limited by rapid cell death upon implantation. Co-culture spheroids exhibit improved survival compared with monodisperse cells, yet little is known about the influence of spatial regulation of ECs within co-culture spheroids. We hypothesized that EC sprouting from co-culture spheroids is a function of EC spatial localization. We formed co-culture spheroids containing ECs and MSCs in two formats: ECs uniformly distributed throughout the spheroid (i.e., mixed) or seeded on the perimeter of the MSC core (i.e., shell). Qualitative observations suggested increased vasculogenesis for mixed co-culture spheroids compared with shell conformations as early as day 3, yet quantitative metrics did not reveal significant differences in network formation between these 3D structures. Notch3 expression demonstrated significant increases in cell-cell communication in mixed conformations compared with shell counterparts. Furthermore, knockdown of Notch3 in MSCs abrogated the vasculogenic potential of mixed spheroids, supporting its role in promoting EC-MSC contacts. This study highlights the direct impact of EC-MSC contacts on sprouting and provides insight to improve the quality of network formation.

Key messages

• Endothelial cell (EC) localization can be controlled in co-culture EC-MSC spheroids.

• Mixed spheroids exhibit consistent networks compared to shell counterparts.

• Differences in NOTCH3 were observed between mixed and shell spheroids.

NOTCH3 may be a necessary target for improved vasculogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, Gerecht S (2016) Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials 102:107–119

    Article  CAS  PubMed  Google Scholar 

  2. Matkar PN, Ariyagunarajah R, Leong-Poi H, Singh KK (2017) Friends turned foes: angiogenic growth factors beyond angiogenesis. Biomolecules 7. DOI https://doi.org/10.3390/biom7040074

    Article  CAS  PubMed Central  Google Scholar 

  3. Lu LX, Deegan A, Musa F, Xu T, Yang Y (2018) The effects of biomimetically conjugated VEGF on osteogenesis and angiogenesis of MSCs (human and rat) and HUVECs co-culture models. Colloids Surf B Biointerfaces 167:550–559

    Article  CAS  PubMed  Google Scholar 

  4. Juhas M, Engelmayr GC Jr, Fontanella AN, Palmer GM, Bursac N (2014) Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A 111:5508–5513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang WG, Niklason LE (2017) A short discourse on vascular tissue engineering. NPJ Regen Med 2:1–8

    Article  Google Scholar 

  6. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ (2003) Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng 9: 95-103. DOI Doi https://doi.org/10.1089/107632703762687573

    Article  CAS  PubMed  Google Scholar 

  7. Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12:2875–2888

    Article  CAS  PubMed  Google Scholar 

  8. Ghajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, Putnam AJ (2010) Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res 316:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grainger SJ, Carrion B, Ceccarelli J, Putnam AJ (2013) Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co-delivery of endothelial cells and stromal cells. Tissue Eng Part A 19:1209–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murphy KC, Whitehead J, Falahee PC, Zhou D, Simon SI, Leach JK (2017) Multifactorial experimental design to optimize the anti-inflammatory and proangiogenic potential of mesenchymal stem cell spheroids. Stem Cells 35:1493–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy KC, Fang SY, Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vorwald CE, Murphy KC, Leach JK (2018) Restoring vasculogenic potential of endothelial cells from diabetic patients through spheroid formation. Cell Mol Bioeng 11:267–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ho SS, Murphy KC, Binder BY, Vissers CB, Leach JK (2016) Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl Med 5:773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roux BM, Akar B, Zhou W, Stojkova K, Barrera B, Brankov J, Brey EM (2018) Preformed vascular networks survive and enhance vascularization in critical sized cranial defects. Tissue Eng Part A 24:1603–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhang SH, Lee S, Lee TJ, La WG, Yang HS, Cho SW, Kim BS (2012) Three-dimensional cell grafting enhances the angiogenic efficacy of human umbilical vein endothelial cells. Tissue Eng Part A 18:310–319

    Article  CAS  PubMed  Google Scholar 

  16. Song LQ, Yuan XG, Jones Z, Griffin K, Zhou Y, Ma T, Li Y (2019) Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci rep 9. DOI https://doi.org/10.1038/s41598-019-42439-9

  17. Chen DY, Wei HJ, Lin KJ, Huang CC, Wang CC, Wu CT, Chao KT, Chen KJ, Chang Y, Sung HW (2013) Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials 34:1995–2004

    Article  CAS  PubMed  Google Scholar 

  18. Bauman E, Feijao T, Carvalho DTO, Granja PL, Barrias CC (2018) Xeno-free pre-vascularized spheroids for therapeutic applications. Sci Rep 8. DOI , 8, 13

  19. Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255–263

    Article  CAS  PubMed  Google Scholar 

  20. Marshall J, Barnes A, Genever P (2018) Analysis of the intrinsic self-organising properties of mesenchymal stromal cells in three-dimensional co-culture models with endothelial cells. Bioengineering (Basel) 5. https://doi.org/10.3390/bioengineering5040092

    Article  CAS  PubMed Central  Google Scholar 

  21. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    Article  CAS  PubMed  Google Scholar 

  22. Williams PA, Stilhano RS, To VP, Tran L, Wong K, Silva EA (2015) Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P). PLoS One 10(4):e0123437. https://doi.org/10.1371/journal.pone.0123437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vorwald CE, Ho SS, Whitehead J, Leach JK (2018) High-throughput formation of mesenchymal stem cell spheroids and entrapment in alginate hydrogels. Methods Mol Biol 1758: 139-149. DOI https://doi.org/10.1007/978-1-4939-7741-3_11

    Chapter  Google Scholar 

  24. Carpentier G, Cascone I (2012) Angiogenesis analyzer for ImageJ. ImageJ User and Developer Conference 2012

  25. Gonzalez-Fernandez T, Sathy BN, Hobbs C, Cunniffe GM, McCarthy HO, Dunne NJ, Nicolosi V, O'Brien FJ, Kelly DJ (2017) Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater 55:226–238

    Article  CAS  PubMed  Google Scholar 

  26. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612

    Article  CAS  PubMed  Google Scholar 

  27. Baraniak PR, McDevitt TC (2012) Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 347:701–711

    Article  CAS  PubMed  Google Scholar 

  28. Moya ML, Hsu YH, Lee AP, Hughes CC, George SC (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19:730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Aledia AS, Popson SA, Him L, Hughes CCW, George SC (2010) Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng Part A 16:585–594

    Article  CAS  PubMed  Google Scholar 

  30. Hsu SH, Ho TT, Huang NC, Yao CL, Peng LH, Dai NT (2014) Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture. Biomaterials 35:7295–7307

    Article  CAS  PubMed  Google Scholar 

  31. Weisel JW, Litvinov RI (2017) Fibrin formation, structure and properties. Subcell Biochem 82:405–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakatsu MN, Davis J, Hughes CC (2007) Optimized fibrin gel bead assay for the study of angiogenesis. J Vis Exp: 186. DOI https://doi.org/10.3791/186

  33. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, de Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, van de Velde M, van Hinsbergh V, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425–532

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bezenah JR, Kong YP, Putnam AJ (2018) Evaluating the potential of endothelial cells derived from human induced pluripotent stem cells to form microvascular networks in 3D cultures. Sci Rep 8:2671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O’Sullivan AN, Dorafshar AH, Grayson WL (2019) Heparin-conjugated decellularized bone particles promote enhanced osteogenic signaling of PDGF-BB to adipose-derived stem cells in tissue engineered bone grafts. Adv Healthc Mat 8. DOI https://doi.org/10.1002/adhm.201801565

    Article  CAS  Google Scholar 

  36. Steinberg MS, Takeichi M (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci U S A 91:206–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinberg MS, Gilbert SF (2004) Townes and Holtfreter (1955): directed movements and selective adhesion of embryonic amphibian cells. J Exp Zool A Comp Exp Biol 301:701–706

    Article  PubMed  Google Scholar 

  38. Amack JD, Manning ML (2012) Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338:212–215

    Article  CAS  PubMed  Google Scholar 

  39. Mack JJ, Iruela-Arispe ML (2018) NOTCH regulation of the endothelial cell phenotype. Current Opin Hematol 25:212–218

    Article  CAS  Google Scholar 

  40. Hasan SS, Tsaryk R, Lange M, Wisniewski L, Moore JC, Lawson ND, Wojciechowska K, Schnittler H, Siekmann AF (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19:928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF et al (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19:915–927

    Article  CAS  PubMed  Google Scholar 

  42. Winkler EA, Sagare AP, Zlokovic BV (2014) The pericyte: a forgotten cell type with important implications for Alzheimer’s disease? Brain Pathol 24:371–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hammerle M, Esk C, Bagley JA et al (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Pan L, Moens CB, Appel B (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141:307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peters EB (2018) Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng Part B Rev 24:1–24

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu H, Kennard S, Lilly B (2009) NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res 104:466–U497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin S, Negulescu A, Bulusu S, Gibert B, Delcros JG, Ducarouge B, Rama N, Gadot N, Treilleux I, Saintigny P, Meurette O, Mehlen P (2017) Non-canonical NOTCH3 signalling limits tumour angiogenesis. Nat Commun 8:16074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge Eduardo Silva for providing cord blood-derived endothelial cells and Alena Casella for early contributions to this work.

Funding

Research reported in this publication was supported by the National Institute of Dental and Craniofacial Research of the National Institutes of Health under award number R01 DE025475 (JKL). CEV was supported by the NHLBI Training Program in Basic and Translational Cardiovascular Science (T32 HL086350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kent Leach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 1009 kb)

ESM2

(DOCX 1804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorwald, C.E., Joshee, S. & Leach, J.K. Spatial localization of endothelial cells in heterotypic spheroids influences Notch signaling. J Mol Med 98, 425–435 (2020). https://doi.org/10.1007/s00109-020-01883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01883-1

Keywords

Navigation