Skip to main content
Log in

Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis.

Key messages

  • Genetic and environmental factors contribute to congenital heart defects (CHDs).

  • How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear.

  • Systems biology-based analysis revealed distinct molecular signature in CHDs.

  • Gene expression modules specifically associated with cyanotic TOF were uncovered.

  • Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CHD:

Congenital heart defect

RVOT:

Right ventricle outflow tract

TOF:

Tetralogy of Fallot

VSD:

Ventricular septal defect

EMT:

Epithelial mesenchymal transition

CMC:

Cardiomyocyte

RPKM:

Reads per kilo base per million of mapped reads

PCA:

Principal component analysis

References

  1. Touma M, Kang X, Gao F, Zhao Y, Cass AA, Biniwale R et al (2017) Wnt11 regulates cardiac chamber development and disease during perinatal maturation. JCI Insight 2

  2. Touma M, Reemtsen B, Halnon N, Alejos J, Finn JP, Nelson SF et al (2017) A path to implement precision child health cardiovascular medicine. Front Cardiovasc Med 4:36

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW, American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Genomic and Precision Medicine (2018) Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 138:e653–e711

    Article  PubMed  PubMed Central  Google Scholar 

  4. Muntean I, Toganel R, Benedek T (2017) Genetics of congenital heart disease: past and present. Biochem Genet 55:105–123

    Article  CAS  PubMed  Google Scholar 

  5. Finnemore A, Groves A (2015) Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med 20:210–216

    Article  PubMed  Google Scholar 

  6. Sinha SK, Donn SM (2006) Fetal-to-neonatal maladaptation. Semin Fetal Neonatal Med 11:166–173

    Article  PubMed  Google Scholar 

  7. Karl TR, Stocker C (2016) Tetralogy of Fallot and its variants. Pediatr Crit Care Med 17:S330–S336

    Article  PubMed  Google Scholar 

  8. Diaz-Frias J, Guillaume M. Tetralogy of Fallot. StatPearls Publishing; 2019 Jun 4

  9. Alpat S, Yilmaz M, Onder S, Sargon MF, Guvener M, Dogan R, Demircin M, Pasaoglu I (2017 Jan) Histologic alterations in tetralogy of Fallot. J Card Surg 32(1):38–44

    Article  PubMed  Google Scholar 

  10. Goldmuntz E, Geiger E, Benson DW (2001) Nkx2.5 mutations in patients with tetralogy of Fallot. Circulation. 104:2565–2568

    Article  CAS  PubMed  Google Scholar 

  11. Zhou W, Lin L, Majumdar A, Li X, Zhang X, Liu W, Etheridge L, Shi Y, Martin J, van de Ven W, Kaartinen V, Wynshaw-Boris A, McMahon A, Rosenfeld MG, Evans SM (2007) Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family–mediated transcriptional activation of TGFb2. Nat Genet 39:1225–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Vliet PP, Lin L, Boogerd CJ, Martin JF, Andelfinger G, Grossfeld PD, Evans SM (2017) Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol 429:249–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA Jr, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M (2017) Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 49:1593–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lacobazzi D, Suleiman MS, Ghorbel M, George SJ, Caputo M, Tulloh RM (2016) Cellular and molecular basis of RV hypertrophy in congenital heart disease. Heart. 102:12–17

    Article  CAS  Google Scholar 

  15. Reddy S, Bernstein D (2015) Molecular mechanisms of right ventricular failure. Circulation. 132:1734–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pattersin AJ, Zhang L (2010) Hypoxia and fetal heart development. Curr Mol Med 10:653–666

    Article  Google Scholar 

  17. Rohlicek CV, Matsuka T, Saiki C (2002) Cardiovascular response to acute hypoxemia in adult rats hypoxemic neonatally. Cardiovasc Res 53:263–270

    Article  CAS  PubMed  Google Scholar 

  18. Kimura W, Sadek HA (2012) The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther 2:278–289

    PubMed  PubMed Central  Google Scholar 

  19. Von Gise A, Pu WT (2012) Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 110:1628–1645

    Article  CAS  Google Scholar 

  20. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80:51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dyson HJ, Wright PE (2016) Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 291:6714–6722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoon H, Lim JH, Cho CH, Huang LE, Park JW (1813) CITED2 controls the hypoxic signaling by snatching p300 from the two distinct activation domains of HIF-1α. Biochim Biophys Acta 2011:2008–2016

    Google Scholar 

  23. Yin Z, Haynie J, Yang X, Han B, Kiatchoosakun S, Restivo J, Yuan S, Prabhakar NR, Herrup K, Conlon RA, Hoit BD, Watanabe M, Yang YC (2002) The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci U S A 99:10488–10493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang RR, Gui YH, Wang X (2015) Role of the canonical Wnt signaling pathway in heart valve development. Zhongguo Dang Dai Er Ke Za Zhi 17:757–762

    CAS  PubMed  Google Scholar 

  25. Paul MH, Harvey RP, Wegner M, Sock E (2014) Cardiac outflow tract development relies on the complex function of Sox4 and Sox11 in multiple cell types. Cell Mol Life Sci 71:2931–2945

    Article  CAS  PubMed  Google Scholar 

  26. Cheng Z, Wang J, Su D, Pan H, Huang G, Li X, Li Z, Shen A, Xie X, Wang B, Ma X (2011) Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet 130:657–662

    Article  PubMed  Google Scholar 

  27. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Touma M, Kang X, Zhao Y, Cass AA, Gao F, Biniwale R, Coppola G, Xiao X, Reemtsen B, Wang Y (2016) Decoding the long noncoding RNA during cardiac maturation: a roadmap for functional discovery. Circ Cardiovasc Genet 9:395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roder J, Linstid B, Oliveira C (2019) Improving the power of gene set enrichment analyses. BMC Bioinformatics. 20:257

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nakashima Y, Yanez DA, Touma M, Jordan MC, Roos KP, Nakano A (2014) Nkx2-5 suppresses the proliferation of atrial myocytes and formation of inter-nodal conduction tracts. Circ Res 114:1103–1113

    Article  CAS  PubMed  Google Scholar 

  31. McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development. 132:189–201

    Article  CAS  PubMed  Google Scholar 

  32. Bamforth SD, Bragança J, Farthing CR, Schneider JE, Broadbent C, Michell AC, Clarke K, Neubauer S, Norris D, Brown NA, Anderson RH, Bhattacharya S (2004) Cited2 controls left-right patterning and heart development through a nodal-Pitx2c pathway. Nat Genet 36:1189–1196

    Article  CAS  PubMed  Google Scholar 

  33. Yoshikawa N, Shimizu N, Maruyama T, Sano M, Matsuhashi T, Fukuda K et al (2012) Cardiomyocyte-specific overexpression of HEXIM1 prevents right ventricular hypertrophy in hypoxia-induced pulmonary hypertension in mice. PLoS One 7:e52522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shelton EL, Yutzey KE (2007) Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol 302:376–388

    Article  CAS  PubMed  Google Scholar 

  35. Ertosun MG, Hapil FZ, Osman NO (2016) E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 31:17–25

    Article  PubMed  Google Scholar 

  36. Karimzadeh F, Opas M (2017) Calreticulin is required for TGF-β-induced epithelial-to-mesenchymal transition during cardiogenesis in mouse embryonic stem cells. Stem Cell Reports 8:1299–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kunarso G, Wong KY, Stanton LW, Lipovich L (2008) Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics 9:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Duncan PI, Stojdl DF, Marius RM, Scheit KH, Bell JC (1998) The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing. Exp Cell Res 241:300–308

    Article  CAS  PubMed  Google Scholar 

  39. Moayedi Y, Basch ML, Pacheco NL, Gao SS, Wang R, Harrison W et al (2014) The candidate-splicing factor Sfswap regulates growth and patterning of inner ear sensory organs. PLoS Genet 10:e1004055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jesse S, Koenig A, Ellenrieder V, Menke A (2010) Lef-1 isoforms regulate different target genes and reduce cellular adhesion. Int J Cancer 126:1109–1120

    CAS  PubMed  Google Scholar 

  41. Kim SS, Seo SR (2011) The regulator of calcineurin 1 (RCAN1/DSCR1) activates the cAMP response element-binding protein (CREB) pathway. J Biol Chem 286:37841–37848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeewa A, Manickaraj AK, Mertens L, Manlhiot C, Kinnear C, Mondal T et al (2012) Genetic determinants of right ventricular remodeling after tetralogy of Fallot repair. Pediatr Res 72:407–413

    Article  PubMed  Google Scholar 

  43. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Yibin Wang for the critical review of this manuscript. We acknowledge the support of the NINDS Informatics Center, the Clinical Genomics Center, the Animal Physiology Core, and the Congenital Heart Defects-BioCore at UCLA.

The UCLA Congenital Heart Defect BioCore Faculty: Marlin Touma, Nancy Halnon, Brian Reemtsen, Juan Alejos, Reshma Biniwale, Myke Federman, Leigh Reardon, Meena Garg, Amy Speirs, John P. Finn, Fabiola Quintero-Rivera, Wayne Grody, Glen Van Arsdell, Stanley Nelson, Yibin Wang.

Funding

This work was supported by grants from the American Heart Association Career Development Award [18CDA34110414]; the Department of Defense-Congressionally Directed Medical Research Programs [W81XWH-18-1-0164]; the NIH/NHLBI [1R56HL146738-01]; and the UCLA David Geffen School of Medicine Research Innovation Seed Grant to M. Touma. We acknowledge the support of the National Institute of Neurological Disorders and Stroke NINDS [P30 NS062691] to G. Coppola and F. Gao.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

MT conceived the project. MT, YZ, and XK designed and performed the research, analyzed most of the data, managed funding, and wrote the manuscript. FG and GC supported bioinformatics analysis. RB, GVA, NH, MG, and BR contributed human specimens and provided clinical insights. RPL and MW supported histology studies. FQR and SFN supported genetics studies and participated in manuscript review and editing.

Corresponding author

Correspondence to Marlin Touma.

Ethics declarations

Ethical standard

All human studies were conducted in accordance with regulation of the University of California Los Angeles Institutional Review Board (UCLA IRB). All animal-related experimental protocols were approved by the UCLA Institutional Animal Care and Use Committee (IACUC). Therefore, all studies have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Informed consents were obtained from parents/legally authorized representative of participants (minors) or next of kin (for the deceased donors).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Kang, X., Gao, F. et al. Gene-environment regulatory circuits of right ventricular pathology in tetralogy of fallot. J Mol Med 97, 1711–1722 (2019). https://doi.org/10.1007/s00109-019-01857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01857-y

Keywords

Navigation